Author: Michael Belevich

Classical Fluid Mechanics

eBook: US $39 Special Offer (PDF + Printed Copy): US $138
Printed Copy: US $119
Library License: US $156
ISBN: 978-1-68108-410-7 (Print)
ISBN: 978-1-68108-409-1 (Online)
Year of Publication: 2017
DOI: 10.2174/97816810840911170101


This textbook primarily explains the construction of the classical fluid model to readers in a holistic manner. Secondly, the book also explains some possible modifications of the classical fluid model which either make the model applicable in some special cases (viscous or turbulent fluids) or simplify it in accordance with the specific mechanical properties (hydrostatics, two-dimensional flows, boundary layers, etc.).

The book explains theoretical concepts in two parts. The first part is dedicated to the derivation of the classical model of the perfect fluid. The second part of the book covers important modifications to the fluid model which account for calculations of momentum, force and the laws of energy conservation. Concepts in this section include the redefinition of the stress tensor in cases of viscous or turbulent flows and laminar and turbulent boundary layers.

The text is supplemented by appropriate exercises and problems which may be used in practical classes. These additions serve to teach students how to work with complex systems governed by differential equations.

Classical Fluid Mechanics is an ideal textbook for students undertaking semester courses on fluid physics and mechanics in undergraduate degree programs.


Writing a new fluid dynamics textbook is a challenging task. In 1895, Sir Horace Lamb established a very high standard with the first edition of Hydrodynamics. This classical presentation was followed by other excellent introductions into the field of fluid mechanics, among them Landau and Lifshitz, 1959, and Batchelor, 1967. The strength of M.Belevich’s book is in its rigorous and systematic approach to developing the mathematical model of fluid dynamics from the first principles. It carefully explains the underlying hypothesis and simplifications used to establish equations that govern motions of a fluid. Extensive use of vector and tensor analysis results in a compact and generalized narrative, without the restrictions of a particular coordinate system.

This textbook is by no means a comprehensive description of the field of fluid dynamics. Some of important problems (e.g. waves) were deliberately left out of the book’s framework. Since the text is based on a course that is taught to students who specialize in geophysical fluid dynamics, more engineering aspects of fluid mechanics (such as turbomachines and airfoils) are also not covered.

The book’s content not only provides a general description of fluid dynamics, but also teaches how to apply universal principles to build a mathematical model of a particular problem. The distinctive feature of M. Belevich’s book is a somewhat non-standard approach of describing the dynamics of fluid from the point of view of the observer (chapter 15). It allows to underline some physical aspects of fluid mechanics which are usually not explicitly established in most textbooks.

The book is complemented by a carefully selected set of exercises. It provides consistent and self-sustained introduction to fluid dynamics, giving enough details to be used either in class or for self-study. It can be used to acquire knowledge in particular aspects of hydromechanics, and also as a source of inspiration for students, researchers and teachers in the field of classical fluid mechanics.

Ilya Rivin
Environmental Modeling Center
National Weather Service
National Oceanic and Atmospheric Administration


.Ion Implantation and Activation.
.Ion Implantation and Activation.
.Ion Implantation and Activation.
.Classical Mechanics and Quantum Mechanics: An Historic-Axiomatic Approach.