Authors: Antonio Boccuto, Xenofon Dimitriou

Convergence Theorems For Lattice Group-Valued Measures

eBook: US $69 Special Offer (PDF + Printed Copy): US $209
Printed Copy: US $175
Library License: US $276
ISBN: 978-1-68108-010-9 (Print)
ISBN: 978-1-68108-009-3 (Online)
Year of Publication: 2015

Introduction

Convergence Theorems for Lattice Group-valued Measures explains limit and boundedness theorems for measures taking values in abstract structures. The book begins with a historical survey about these topics since the beginning of the last century, moving on to basic notions and preliminaries on filters/ideals, lattice groups, measures and tools which are featured in the rest of this text. Readers will also find a survey on recent classical results about limit, boundedness and extension theorems for lattice group-valued measures followed by information about recent developments on these kinds of theorems and several results in the setting of filter/ideal convergence. In addition, each chapter has a general description of the topics and an appendix on random variables, concepts and lattices is also provided. Thus readers will benefit from this book through an easy-to-read historical survey about all the problems on convergence and boundedness theorems, and the techniques and tools which are used to prove the main results. The book serves as a primer for undergraduate, postgraduate and Ph. D. students on mathematical lattice and topological groups and filters, and a treatise for expert researchers who aim to extend their knowledge base.

Contributors

Author(s):
Antonio Boccuto
Dipartimento di Matematica e Informatica
via Vanvitelli, 1-06123 Perugia
Italy


Xenofon Dimitriou
Department of Mathematics
University of Athens
Panepistimiopolis, Athens 15784
Greece




RELATED BOOKS

.Subharmonic Functions, Generalizations, Holomorphic Functions, Meromorphic Functions, and Properties.
.Predictive Analytics Using Statistics and Big Data: Concepts and Modeling.
.Differential and Integral Calculus - Theory and Cases.
.TRANSFORMATIONS: A MATHEMATICAL APPROACH – FUNDAMENTAL CONCEPTS.