Photonic Bandgap Structures Novel Technological Platforms for Physical, Chemical and Biological Sensing


Marco Pisco, Andrea Cusano, Antonello Cutolo

DOI: 10.2174/97816080544801120101
eISBN: 978-1-60805-448-0, 2012
ISBN: 978-1-60805-507-4

Indexed in: Book Citation Index, Science Edition, EBSCO.

This E-Book covers the research and the development of a novel generation of photonic devices for sensing applications. The E-Book s...[view complete introduction]
US $
Buy Personal eBook
Order Library eBook
Order Printed Copy
Order PDF + Printed Copy (Special Offer)

*(Excluding Mailing and Handling)

🔒Secure Checkout Personal information is secured with SSL technology
Download Flyer

Photonic Crystal Fiber: Theory and Fabrication

- Pp. 84-92 (9)

Annamaria Cucinotta


Photonic Crystal Fibers (PCFs) have extended the range of capabilities in optical fibers, both by improving well-established properties and introducing new features. PCFs are optical fibers that employ a microstructured arrangement in a background material of different refractive index. The background material is often undoped silica and a low index region is typically provided by air voids running along the length of the fiber.The strong wavelength dependency of the effective refractive index and the inherently large design flexibility of the PCFs allow for a whole new range of novel properties. Such properties include endlessly single-moded fibers, extremely nonlinear fibers and fibers with anomalous dispersion in the visible wavelength region. Fabrication of PCF, like in conventional fiber fabrication, starts with a fiber preform. PCF preforms are formed by stacking a number of capillary silica tubes and rods to form the desired air/silica structure. This way of creating the preform allows a high level of design flexibility as both the core size and shape as well as the index profile throughout the cladding region can be controlled.When the desired preform has been constructed, it is drawn to a fiber in a conventional high-temperature drawing tower and hair-thin photonic crystal fibers are readily produced in kilometer lengths.

Purchase Chapter  Book Details


Webmaster Contact: Copyright © 2019 Bentham Science