

SMART HEALTHCARE

LEVERAGING AI AND CLOUD TECHNOLOGIES FOR ENHANCED MEDICAL SOLUTIONS

Editors:

Prabhisek Singh

Manoj Diwakar

Neeraj Kumar Pandey

Amit Kumar Mishra

Indrajeet Gupta

Bentham Books

Smart Healthcare: Leveraging AI and Cloud Technologies for Enhanced Medical Solutions

Edited by:

Prabhishhek Singh

School of Computer Science

*Engineering and Technology, Bennett University
Greater Noida, India*

Manoj Diwakar

*Department of Computer Science and Engineering
Graphic Era (Deemed to be University)
Dehradun, Uttarakhand, India*

Neeraj Kumar Pandey

*Department of Computer Science and Engineering
Graphic Era (Deemed to be University)
Dehradun, Uttrakhand, India*

Amit Kumar Mishra

*Department of Computer Science and Engineering
Graphic Era Hill University
Dehradun, Uttrakhand, India*

&

Indrajeet Gupta

*School of Computer Science Engineering
Galgotias University, Greater Noida, India*

Smart Healthcare: Leveraging AI and Cloud Technologies for Enhanced Medical Solutions

Editors: Prabhishhek Singh, Manoj Diwakar, Neeraj Kumar Pandey, Amit Kumar Mishra & Indrajeet Gupta

ISBN (Online): 979-8-89881-342-0

ISBN (Print): 979-8-89881-343-7

ISBN (Paperback): 979-8-89881-344-4

© 2026, Bentham Books imprint.

Published by Bentham Science Publishers Pte. Ltd. Singapore,

in collaboration with Eureka Conferences, USA. All Rights Reserved.

First published in 2026.

BENTHAM SCIENCE PUBLISHERS LTD.

End User License Agreement (for non-institutional, personal use)

This is an agreement between you and Bentham Science Publishers Ltd. Please read this License Agreement carefully before using the ebook/echapter/ejournal ("Work"). Your use of the Work constitutes your agreement to the terms and conditions set forth in this License Agreement. If you do not agree to these terms and conditions then you should not use the Work.

Bentham Science Publishers agrees to grant you a non-exclusive, non-transferable limited license to use the Work subject to and in accordance with the following terms and conditions. This License Agreement is for non-library, personal use only. For a library / institutional / multi user license in respect of the Work, please contact: permission@benthamscience.org.

Usage Rules:

1. All rights reserved: The Work is the subject of copyright and Bentham Science Publishers either owns the Work (and the copyright in it) or is licensed to distribute the Work. You shall not copy, reproduce, modify, remove, delete, augment, add to, publish, transmit, sell, resell, create derivative works from, or in any way exploit the Work or make the Work available for others to do any of the same, in any form or by any means, in whole or in part, in each case without the prior written permission of Bentham Science Publishers, unless stated otherwise in this License Agreement.
2. You may download a copy of the Work on one occasion to one personal computer (including tablet, laptop, desktop, or other such devices). You may make one back-up copy of the Work to avoid losing it.
3. The unauthorised use or distribution of copyrighted or other proprietary content is illegal and could subject you to liability for substantial money damages. You will be liable for any damage resulting from your misuse of the Work or any violation of this License Agreement, including any infringement by you of copyrights or proprietary rights.

Disclaimer:

Bentham Science Publishers does not guarantee that the information in the Work is error-free, or warrant that it will meet your requirements or that access to the Work will be uninterrupted or error-free. The Work is provided "as is" without warranty of any kind, either express or implied or statutory, including, without limitation, implied warranties of merchantability and fitness for a particular purpose. The entire risk as to the results and performance of the Work is assumed by you. No responsibility is assumed by Bentham Science Publishers, its staff, editors and/or authors for any injury and/or damage to persons or property as a matter of products liability, negligence or otherwise, or from any use or operation of any methods, products instruction, advertisements or ideas contained in the Work.

Limitation of Liability:

In no event will Bentham Science Publishers, its staff, editors and/or authors, be liable for any damages, including, without limitation, special, incidental and/or consequential damages and/or damages for lost data and/or profits arising out of (whether directly or indirectly) the use or inability to use the Work. The entire liability of Bentham Science Publishers shall be limited to the amount actually paid by you for the Work.

General:

1. Any dispute or claim arising out of or in connection with this License Agreement or the Work (including non-contractual disputes or claims) will be governed by and construed in accordance with the laws of Singapore. Each party agrees that the courts of the state of Singapore shall have exclusive jurisdiction to settle any dispute or claim arising out of or in connection with this License Agreement or the Work (including non-contractual disputes or claims).
2. Your rights under this License Agreement will automatically terminate without notice and without the

need for a court order if at any point you breach any terms of this License Agreement. In no event will any delay or failure by Bentham Science Publishers in enforcing your compliance with this License Agreement constitute a waiver of any of its rights.

3. You acknowledge that you have read this License Agreement, and agree to be bound by its terms and conditions. To the extent that any other terms and conditions presented on any website of Bentham Science Publishers conflict with, or are inconsistent with, the terms and conditions set out in this License Agreement, you acknowledge that the terms and conditions set out in this License Agreement shall prevail.

Bentham Science Publishers Pte. Ltd.

No. 9 Raffles Place
Office No. 26-01
Singapore 048619
Singapore
Email: subscriptions@benthamscience.net

CONTENTS

FOREWORD	i
PREFACE	ii
LIST OF CONTRIBUTORS	v
CHAPTER 1 ENHANCING HEALTHCARE ACCESS THROUGH AI-DRIVEN REMOTE PATIENT MONITORING AND TELEHEALTH	1
<i>Gopal Krishna, Kapil Joshi, Amrendra Nath Tripathi and Parvesh Saini</i>	
INTRODUCTION	2
BACKGROUND	4
METHODS	9
Integration of AI in Telehealth for Remote Patient Monitoring	11
<i>Data Collection and Processing</i>	11
<i>Predictive Analytics and Early Intervention</i>	11
<i>Remote Overgrowing and Decision Support Systems</i>	12
<i>Customized Treatment Plans</i>	12
<i>Enhancing Patient Engagement</i>	12
<i>Remote Monitoring of Chronic Conditions</i>	12
CHALLENGES AND FUTURE DIRECTIONS	13
Data Privacy and Security	13
Interoperability	13
Ethical Concerns	13
Bias and Fairness	13
Establishing Comprehensive Ethical Frameworks	14
Calendars	14
ETHICAL CONSIDERATIONS	14
Privacy	14
Informed Consent	14
Transparency	14
Data Security	14
Privacy and Consent	14
Responsible Use of AI	15
CONCLUSION	15
REFERENCES	15
CHAPTER 2 NATURAL LANGUAGE PROCESSING FOR CLINICAL DATA	
INTERPRETATION	18
<i>Deepak Upadhyay, Abhay Upadhyay, Kunj Bihari Sharma and Arvind Singh Rawat</i>	
INTRODUCTION	18
NLP TECHNIQUES FOR CLINICAL DATA INTERPRETATION	21
Applications of NLP in Clinical Data Interpretation	22
Case Studies: Real-world Implementations of NLP in Healthcare	23
Evaluation Metrics for Clinical NLP	24
NLP FRAMEWORKS AND TOOLS FOR CLINICAL DATA	26
Spacy, Scikit-learn, and NLTK	26
Clinical-Specific Tools	26
DEEP LEARNING IN CLINICAL NLP	27
Deep Learning Architectures	27
Pre-trained Models	27
<i>BioBERT</i>	27

<i>BlueBERT</i>	29
CHALLENGES AND FUTURE DIRECTIONS	29
Data Privacy and Security	29
Domain Adaptation	29
Future Research Areas	29
Zero-Shot Learning	30
Self-Supervised Learning	30
Multilingual Clinical Data Handling	30
CONCLUSION	30
REFERENCES	31
CHAPTER 3 BLOCKCHAIN TECHNOLOGY FOR SECURE HEALTH DATA MANAGEMENT	
<i>Deepak Upadhyay, Abhay Upadhyay, Kunj Bihari Sharma and Arti Rawat</i>	33
INTRODUCTION	33
METHODOLOGY	36
IMPLEMENTATION	36
Advantages and Effectiveness	41
<i>Transaction Throughput vs. Number of Nodes</i>	41
<i>Integrity Check (Pass/Fail) vs. Time After Tampering Attempt</i>	42
<i>Data Verification Time vs. Data Size</i>	42
<i>Data Exchange Success Rate vs. Number of Interconnected Systems</i>	42
<i>Smart Contract Execution Time vs. Number of Contracts Processed</i>	42
<i>Energy Consumption vs. Number of Transactions</i>	42
<i>Data Retrieval Time vs. Network Load</i>	42
Comparison with State-of-the-Art	42
RESULTS	43
FUTURE WORK	43
CONCLUSION	45
REFERENCES	46
CHAPTER 4 ENSURING WATER RESILIENCE IN SMART HOSPITALS: THE ROLE OF AI IN CRISIS MANAGEMENT AND RESOURCE OPTIMIZATION	
<i>Filippo Verre</i>	47
INTRODUCTION	47
METHODOLOGY	49
The Importance of Water Resilience in Healthcare	50
The Close Connection Between AI and IoT in Transforming Water Management in Healthcare Systems	51
Case Study: AI-Powered Water Resilience in Crisis Management	53
Ethical and Privacy Considerations in Relation to AI-driven Approaches in Healthcare Facilities	57
CONCLUSION	60
REFERENCES	62
CHAPTER 5 FUTURE TRENDS: AI AND CLOUD INNOVATIONS IN HEALTHCARE	
<i>Ashutosh Bhatt, Ambika Aggarwal, Pooja Baloni and Chandra Rawat</i>	64
INTRODUCTION	65
The Role of AI in Healthcare	65
OBJECTIVES	65
AI in Healthcare	66
Investigate Cloud Computing Innovations in Healthcare	67

<i>Data Integration and Interoperability</i>	68
<i>Scalable Infrastructure</i>	68
<i>Enhanced Security and Compliance</i>	69
<i>Collaborative Research</i>	69
<i>Cost Efficiency</i>	69
<i>Disaster Recovery:</i>	69
<i>Advanced Analytics and Machine Learning</i>	69
Analyze the Convergence of AI and Cloud Computing	70
Forecast Future Trends and Scenarios	71
Evaluate the Challenges and Ethical Considerations	71
<i>Challenges in the Convergence of AI and Cloud Computing in Healthcare</i>	72
<i>Ethical Considerations in the Convergence of AI and Cloud Computing in Healthcare</i>	73
Practical Insights and Recommendations	74
<i>Insights</i>	74
<i>Recommendations:</i>	76
CONCLUSION	76
REFERENCES	77
SUBJECT INDEX	80

FOREWORD

Rapid developments in Cloud Computing and Artificial Intelligence (AI) are causing a significant upheaval in the healthcare sector. The delivery, administration, and experiences of patients and providers in healthcare services are being completely transformed by these technologies. Healthcare workers may make better choices and enhance patient outcomes with the help of AI's potent tools for diagnostics, predictive analytics, customized medication, and automated processes. On the other hand, cloud computing offers scalable, adaptable, and reasonably priced options for processing, distributing, and storing enormous volumes of medical data. In addition to improving the efficacy and efficiency of medical procedures, the integration of AI and cloud computing in healthcare addresses important issues, including data security, interoperability, and real-time patient information access.

These technologies have the potential to drastically lower costs, enhance accessibility, and raise the standard of treatment as they develop further. In order to solve several problems, the editors have strived to highlight to accelerate the digital transformation of the healthcare sector and promote cooperation among industry players such as AI technological advancements for healthcare uses, AI-powered diagnostic tools and imaging technologies, predictive analytics in personalized medicine, and practical uses of AI in radiology analytics.

Vaibhav Kumar
Ambilio, Association of Data Scientists
Karnataka, India

PREFACE

The book on **Smart Healthcare: Leveraging AI and Cloud Technologies for Enhanced Medical Solutions** have new research findings in healthcare by using different computing paradigm specifically AI and cloud technologies. The healthcare industry is on the brink of a digital revolution, driven by the synergistic power of artificial intelligence (AI) and cloud computing. These technologies promise to transform every facet of healthcare delivery, from diagnostics and treatment planning to patient monitoring and administrative efficiency. This edited book, "Smart Healthcare: Leveraging AI and Cloud Technologies for Enhanced Medical Solutions," aims to serve as a comprehensive guide and a valuable resource for healthcare professionals, IT specialists, policymakers, and academics. By compiling the latest research and insights from leading experts in the field, this book will provide a detailed exploration of the advancements, practical applications, and future possibilities of AI and cloud computing in healthcare.

This book introduces the profound impact of AI and cloud computing on the healthcare industry, emphasizing their role in revolutionizing diagnostics, treatment planning, and data management. The book brings together contributions from leading experts to provide comprehensive insights into current innovations, practical applications, and future trends. Starting with an overview of the technological landscape, the book explores AI advancements like machine learning and computer vision, and the transformative power of cloud computing. It includes detailed case studies and real-world examples demonstrating how these technologies enhance patient care and operational efficiency. Acknowledging challenges such as data privacy, security, and regulatory compliance, the book offers practical solutions and strategies. It also looks ahead to emerging technologies like edge computing, blockchain, and advanced robotics, discussing their potential impact on healthcare.

A key strength of the book is its practical guidance for healthcare professionals, IT specialists, and policymakers, providing actionable insights for adopting AI and cloud solutions. The editors aim to inspire and inform stakeholders, contributing to the digital transformation of healthcare. In summary, the book is a comprehensive, accessible guide to understanding and leveraging AI and cloud computing in healthcare, offering a roadmap for the future of healthcare innovation. The content of this book is organized as follows:

The chapter 1 examines historical development and applications for AI in health care, as well perceived difficulties, and future trends still to come. The main objective is to investigate in depth and systemically combine AI with two disciplines characteristic of medicinal thought: remote patient monitoring and telehealth. It aims to demonstrate how AI can make health care services more effective and efficient, changing the face of healthcare completely. In this study, different datasets were collected from various sources, such as medical databases, public health repositories, wearables, and simulated patient data. AI algorithms, which include traditional machine learning as well as deep learning models were used for data analysis.

Chapter 2 covers natural language processing for clinical data interpretation. Natural Language Processing (NLP) transforms medical data reading by improving the context of unstructured text. In this chapter, we delve into the capability of NLP techniques such as tokenization, named entity recognition and deep learning models like LSTMs and Transformers in dealing with clinical data like electronic health records and discharge summaries. By first emphasizing work in zero-shot learning, self-supervised learning and multilingual data processing, this chapter illustrates the necessity to enhance NLP for better

patient care and clinical decision making.

Chapter 3 focuses on blockchain technology for secure health data management. To address the key performance issues related to transaction throughput, data integrity and energy consumption blockchain technology is used in health data management. The simulations here suggest that blockchain does indeed contribute to overall data security and interoperability, albeit with some cost in increased latency and energy requirements as well as scalability. Blockchain performs well in terms of health data management and security; however, it needs to be optimized for capacity on larger datasets under heavy network load. This research shows that better and more sustainable solutions in blockchain performance, especially during emergency situations are greatly needed. The results illustrate the benefit of blockchain to revolutionize healthcare data management but also provide insights into key areas that need more work.

Chapter 4 focuses on ensuring water resilience in smart hospitals focusing the role of AI in crisis management and resource optimization. Water resilience plays a critical role in ensuring uninterrupted function in modern hospitals. Disturbance to the supply of this precious material creates robust issues in care and patient safety. This chapter explores how AI with IoT-based solutions can be applied to enhance water management further for sustainability and reliability of supply in smart hospitals to solve or even prevent water crises that could generate irreparable damages to the patients. With modern AI-powered IoT, monitoring and supply of quality water in real-time, predictive maintenance, and demand forecasts are not only possible but highly used on a global scale.

Chapter 5 covers future trends by using AI and cloud innovations in healthcare. Amalgamation of AI & cloud computing to bring a big relevant change in healthcare, where they are helping the doctor by examine huge data of medical discipline, this means with the help of these emerging technologies experts can easily diagnose the disease in early stage, provide better personalised cure plans, speed up the treatment and the discovery of new drugs. Cloud computing is dedicated to keep the track of data securely with accuracy while sharing with others. But here it is important to focus some issues like algorithm selection, authenticity, integrity and security of data of the patients. Despite these concerns, AI and cloud machinery can really boost up healthcare and restructuring a better future with more proactive and personalised care for healthy population.

The latest advances in the field of health are highly driven by AI and cloud technologies are presented in this book. On behalf of the editors, we would like to offer our appreciation to everyone who took part in the preparation of this project. Most importantly the authors, whose outstanding work is at the core of the book, and we gratefully congratulate all those who contributed to this book in any possible way and wish them great success. We would like to take this time to thank our family and friends for their support and encouragement while we worked on this book. We would like to express our gratitude to the writers for their contributions to this edited book. We would also like to thank Bentham Science Publishers and its whole team for facilitating the work and providing us the opportunity to be a part of this work.

Prabhishek Singh
 School of Computer Science
 Engineering and Technology, Bennett University
 Greater Noida, India

Manoj Diwakar

Department of Computer Science and Engineering
Graphic Era (Deemed to be University)
Dehradun, Uttarakhand, India

Neeraj Kumar Pandey

Department of Computer Science and Engineering
Graphic Era (Deemed to be University)
Dehradun, Uttrakhand, India

Amit Kumar Mishra

Department of Computer Science and Engineering
Graphic Era Hill University
Dehradun, Uttrakhand, India

&

Indrajeet Gupta

School of Computer Science Engineering
Galgotias University, Greater Noida, India

List of Contributors

Amrendra Nath Tripathi	School of Computer Science, UPES, Dehradun, India
Abhay Upadhyay	Department of CSE, Graphic Era Deemed to be University, Dehradun, Uttrakhand, India
Arvind Singh Rawat	IMS Laboratory, University of Bordeaux, Bordeaux, France
Arti Rawat	Computer Science & Engineering, Universite de Bordeaux/ISPED, Bordeaux, F-33000, France
Ambika Aggarwal	School of Computer Science, UPES, Dehradun, Uttarakhand, India
Ashutosh Bhatt	Himalayan School of Science and Technology, Swami Rama Himalayan University, Dehradun, Uttarakhand, India
Chandra Rawat	Department of Information Technology Services, Florida State University, Tallahassee, USA
Deepak Upadhyay	Department of CSE, Graphic Era Hill University, Dehradun, India
Filippo Verre	CMES - Center for Advanced Middle Eastern Studies, Lund University, Sweden
Gopal Krishna	Department of CSE, Uttarakhand Institute of Technology, Uttarakhand University, Dehradun, 248007, India
Kapil Joshi	Department of CSE, Uttarakhand Institute of Technology, Uttarakhand University, Dehradun, 248007, India
Kunj Bihari Sharma	Department of CSE, Graphic Era Deemed to be University, Dehradun, Uttrakhand, India
Parvesh Saini	Asia Pacific International College, Melbourne, Victoria, Australia
Pooja Baloni	Himalayan School Of Science And Technology, Swami Rama Himalayan University, Dehradun, Uttarakhand, India

CHAPTER 1

Enhancing Healthcare Access through AI-Driven Remote Patient Monitoring and Telehealth

Gopal Krishna¹, Kapil Joshi^{1,*}, Amrendra Nath Tripathi² and Parvesh Saini³

¹ Department of CSE, Uttarakhand Institute of Technology, Uttarakhand University, Dehradun-248007, India

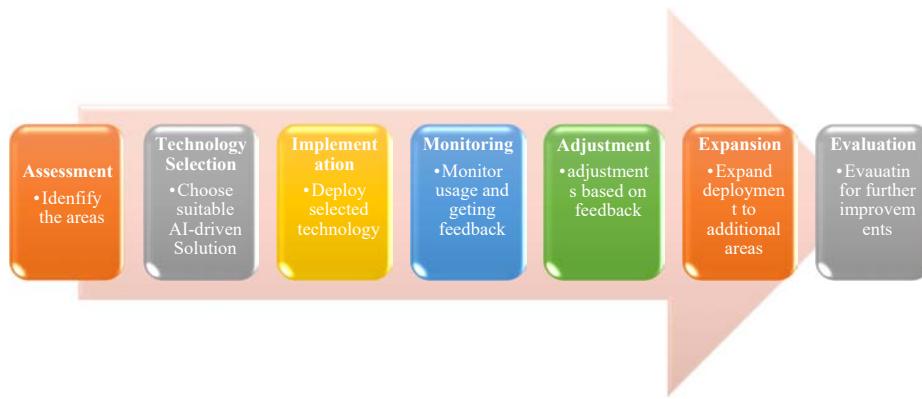
² School of Computer Science, UPES, Dehradun, India

³ Asia Pacific International College, Melbourne, Victoria, Australia

Abstract: AI's integration into healthcare, especially in remote patient monitoring and tele-health, is becoming increasingly important. This article examines the historical development and applications of AI in healthcare, as well as the perceived difficulties and future trends yet to come. The primary objective is to investigate and systematically combine AI with two disciplines characteristic of medical thought: remote patient monitoring and telehealth. It aims to demonstrate how AI can make healthcare services more effective and efficient, changing the face of healthcare completely. In this study, different datasets were collected from various sources, such as medical databases, public health repositories, wearables, and simulated patient data. AI algorithms, which include traditional machine learning as well as deep learning models, were used for data analysis. Through simulation and experiments, the efficacy of AI algorithms in remote patient monitoring and telehealth was validated. The empirical findings of the research reveal that enabling AI predictive analytics, intervening in a timely manner, providing remote consultations, supporting decision-making systems, and forming custom-level therapeutic programs, all serve to improve delivery through remote patient monitoring and telehealth greatly. Telehealth solutions driven by AI increase patient involvement, especially amongst those with chronic conditions. Additionally, the integration of AI technologies demonstrates promise in improving diagnostic accuracy and providing personalized healthcare. This study acknowledges challenges such as data privacy, interoperability, ethical concerns, and potential bias within AI algorithms. Overcoming these limitations is crucial for conscientiously and justly implementing AI in healthcare. The future direction of research should focus on improving the security of data, making it more interoperable, developing comprehensive ethical frameworks to address AI's potential biases, and refine the wording in AI models. This will add up to unleashing AI's full potential in remote patient monitoring and telehealth.

* Corresponding author Kapil Joshi: Department of CSE, Uttarakhand Institute of Technology, Uttarakhand University, Dehradun-248007, India; E-mail: kapilengg0509@gmail.com

Keywords: Artificial Intelligence (AI), Data analysis, Data privacy, Healthcare remote patient monitoring, Patient engagement, Predictive analytics, Telehealth.


INTRODUCTION

Advances in AI have led to revolutionary changes in many areas. Healthcare is an area where AI has exhibited great promise and success. Recently, AI-driven technology has changed the way people receive medical care. It has made medical services better, faster and more creative: giving solutions to otherwise impossible implications. During a health examination, AI helps doctors monitor a person's vital signs, physical conditions, and other health status data - from a distance. Thanks to this technology, patients have more control over their own health, and professionals can intervene more promptly. AI-powered remote patient care is a key component of telehealth, including digital platforms and AI-assisted communication tools. They do not treat or diagnose but, rather the exact opposite, bring health services to new levels of possibility beyond the restrictions of physical, on-site healthcare facilities. One of the main implications of AI-empowered telehealth remote patient care is redefining health maintenance and accessibility. In particular, doctors can use AI algorithms to process the vast volume of data generated from remote monitoring and telehealth platforms to yield dividends, create treatment schedules, and intervene in a way that is certain to deliver the maximum level of benefit. This type of actionable data extends from remote monitoring to enable comprehensive healthcare delivery [1].

This way, doctors can prescribe treatment before complications arise, which can reduce the number of hospitalizations and time needed to deploy a wide variety of treatments across healthcare systems. Another wonderful benefit of AI is its ability to help customize healthcare more than ever before. By utilizing an individual patient's unique data and health history, and making treatment strategies more targeted than ever before, AI not only makes treatment more effective but also promotes patient compliance and encourages the creation of patient-centered healthcare services. This involves examining the implications, problems, and future prospects for integrating AI into healthcare systems, including a critical assessment of who stands to benefit most from new developments. The major objectives of the current research are to conduct a comprehensive study of the incorporation of artificial intelligence (AI) in remote patient monitoring and healthcare in general. It is hoped that this new perspective will enable readers to gain insight into these creative technologies and recognize the potential for AI to uplift the healthcare landscape. Firstly, this research focuses on several specific aims [2]. We set out to see exactly how remote patient monitoring functions with AI in place. This involves a detailed analysis of algorithms for health data that are sent from wearable devices or sensors by an

AI-enabled computer system. We aim to investigate the impact of AI-based technologies on healthcare proactivity. Second, we examine the application of AI technologies in telehealth services. Our aim is to demonstrate how AI supports various aspects of telehealth, including remote consultations, diagnosis, and personalized healthcare. In particular, this study focuses keenly on how AI can promote efficient communication between patients and healthcare providers that is both accurate and timely, irrespective of borders or such mundane constraints like time differences. Furthermore, this study evaluates the impact of integrating AI in remote patient monitoring and telehealth on healthcare accessibility. Attention is primarily focused here on addressing issues related to access to healthcare, particularly in remote or underserved areas. We look at how these technologies address such issues thereby delivering healthcare services more widely and more conveniently for all sectors of society [3].

Improving healthcare access through AI-powered remote patient monitoring and telehealth is a multifaceted process. For example, the first step is identifying regions with poor healthcare access and determining the critical healthcare services that must be availed. The next step is to select a technology that can be utilized and to research suitable solutions powered by artificial intelligence. The implementation phase involves availing the ideal technology in the identified regions and providing adequate training to the healthcare providers and users. There must then be feedback from the experiences of people and reviews on social media to enable adjustments and improvements. Expanding to other regions follows once successes are evident. Before it ends, evaluations are conducted to ensure it is working, informing future continuations and expansions. Fig. (1) represents the flowchart for enhancing healthcare access through AI-driven remote patient monitoring [4].

Fig. (1). Flowchart for enhancing healthcare access through AI-driven remote patient monitoring.

CHAPTER 2

Natural Language Processing for Clinical Data Interpretation

Deepak Upadhyay^{1,*}, Abhay Upadhyay², Kunj Bihari Sharma² and Arvind Singh Rawat³

¹ Department of CSE, Graphic Era Hill University, Dehradun, India

² Department of CSE, Graphic Era Deemed to be University, Dehradun, Uttrakhand, India

³ IMS Laboratory, University of Bordeaux, Bordeaux, France

Abstract: Natural Language Processing (NLP) transforms the interpretation of medical data by improving the context of unstructured text. In this chapter, we delve into the potential of NLP techniques such as tokenization, named entity recognition, and deep learning models like LSTMs and Transformers in handling clinical data, including electronic health records and discharge summaries. We further elaborate on using BIOBERT and BlueBERT as advanced pre-trained models, discussing their challenges with data confidentiality and the scope of domain adaptation in future work to tune them for the required task. By emphasizing on zero-shot learning, self-supervised learning, and multilingual data processing, this chapter illustrates the necessity to enhance NLP for better patient care and clinical decision making.

Keywords: Clinical data interpretation, Deep learning models, Named entity recognition (NER), Natural language processing (NLP), Pre-trained models.

INTRODUCTION

Natural Language Processing (NLP) is a subfield of artificial intelligence that deals with the interaction between computers and humans using natural language. With the generation of more and more records daily in healthcare, NLP has become crucial because it analyzes unstructured clinical text data in a way no other analytic tool can do [1]. This data is both abundant and disparate, such as in the form of physician notes, discharge summaries, radiology reports, and patient records, but largely unstructured. Providing rich information, when correctly interpreted, can assist clinical decision-making, lead to improved patient care, and operational efficiency in healthcare systems. NLP allows the longitudinal data in

*Corresponding author Deepak Upadhyay: Department of CSE, Graphic Era Hill University, Dehradun, India;
E-mail: deepaku.cse@gmail.com

these clinical charts to be mined and processed automatically, serving as a bridge between complex medical nomenclature and computational meaning [2]. The biggest problem with clinical data is its interpretation. Much of this data is in unstructured form (e.g., free-text clinical notes) that are not amenable to processing using traditional computational methods. Unstructured text, in comparison [3] to structured data (for example, lab results that are organized in a table), may have more variability and can contain unique medical abbreviations and jargon compared with the institution or even the individual. The fact that every data structure can be intertwined creates challenges in standardizing and interpreting the data [4].

Also, Medical language is inherently technical, requiring specialized knowledge to accurately interpret the terms and signs found in clinical data. Furthermore, the presence of synonyms, spelling variations, and multiple ways of referring to the same condition complicates the interpretation process. For instance, “myocardial infarction” might be referred to as MI or simply heart attack, depending on the context [5]. Without domain-specific expertise, NLP models often struggle to fully grasp the meaning and nuances of medical text.

In privacy and security, an important challenge is how you are going to manage Data privacy. Medical information is sensitive, and it is paramount that NLP systems meet healthcare regulations like the Health Insurance Portability and Accountability Act (HIPAA) [6]. In implementing NLP solutions for healthcare settings, it is important to ensure data privacy and security.

One of the ways to deal with this problem is by implementing NLP in healthcare, which will not only help us get rid of unstructured clinical data, but also transform mining through data more effectively. Much of NLP development goes into the ability to ingest text data at the scale of electronic health records and extract key information about a patient without human input. By recognizing and structuring key entities [7], NLP can help clinicians get to the documentation pertaining to a specific diagnosis, medication, symptom, or procedure quickly. This can prove especially beneficial in emergency situations where the speed of response is essential [8].

Summarizing medical records also involves natural language processing. And as more and more information is put in patient histories, clinicians might have to now search through a large booklet of notes to find the facts that they are interested in [9]. The NLP algorithms ensure the autogeneration of brief summarisations about those records that cover key objects such as patient background, lab results, or treatment plans. This allows healthcare workers to refer to essential information, improving workflows easily.

Additionally, the important role of NLP remains in the automation of diagnosis and clinical decision support. Using these patterns based on the past clinical notes of patients and correlating them with known medical knowledge derived from natural language processing (NLP) techniques [10], NLP tools can help doctors diagnose a disease or recommend a cure, as they are not sure about which treatment protocol to adopt. These tools are especially helpful in detecting some conditions that might be missed in manual review, thereby decreasing the chances of misdiagnosis [11].

NLP not only aids in patient care but also assists medical research by enabling the extraction of knowledge from clinical trials, literature, and other text corpora. With the ability to process and structure information more or less demographically, NLP allows researchers to learn trends, validate hypotheses, and assist in evidence-based medicine [12]. Therefore, NLP is changing the way we interpret clinical data, addressing the inherent limitations and helping us to fully utilize our healthcare data [13].

Patient data can be broadly classified into structured and unstructured formats. Structured data is information that is arranged and belongs to established criteria; consequently, it is simply searchable and analysable. These may include data such as lab results, patient demographics [14], medication lists, and vital signs; these are usually stored in databases or spreadsheets with structured fields. This data is structured and easiest to understand by the standard computational systems.

Conversely, unstructured data represents all information that does not have a predefined format. Examples include free-text clinical notes, radiology reports, discharge summaries, and physician narratives. This kind of data is common in healthcare, where doctors usually write down what they see and their conclusions [16] on an H&P (History and Physical) in prose format. Although unstructured data provides rich detail about the condition of a patient, it is also much more difficult to process and analyze because it lacks structure and varies greatly.

Unstructured data can include text-based clinical data, which is a significant part of it. An example is Electronic Health Records (EHRs), which typically contain a mix of structured data (e.g., blood-pressure readings) together with unstructured components such as clinical notes [17]. Examples include discharge notes, where physicians document the conditions and plan for future care of patients, and radiology reports that describe imaging results. These texts hold important medical knowledge but are too complex to be directly understood by sophisticated machine learning and natural language processing (NLP) algorithms [18].

Clinical data is complex and highly variable. Additionally, the ambiguity of language—with many terms having multiple meanings in medical practice—adds

CHAPTER 3

Blockchain Technology for Secure Health Data Management

Deepak Upadhyay^{1,*}, Abhay Upadhyay², Kunj Bihari Sharma² and Arti Rawat³

¹ Department of CSE, Graphic Era Hill University, Dehradun, India

² Department of CSE, Graphic Era Deemed to be University, Dehradun, Uttrakhand, India

³ Computer Science & Engineering, Universite de Bordeaux/ISPED, F-33000, Bordeaux, France

Abstract: The study aims to address the key performance issues related to transaction throughput, data integrity, and energy consumption when applying blockchain technology to health data management. The simulations suggest that blockchain indeed contributes to overall data security and interoperability, albeit with some cost in increased latency and energy requirements as well as scalability. Blockchain performs well in terms of health data management and security; however, it needs to be optimized for capacity for larger datasets under heavy network load. This research shows that better and more sustainable solutions in blockchain performance, especially during emergency situations, are greatly needed. The results illustrate the benefit of blockchain to revolutionize healthcare data management, but also provide insights into key areas that need more work.

Keywords: Blockchain, Data integrity, Data management, Security, Transaction throughput.

INTRODUCTION

The blockchain technology is currently seen as a groundbreaking solution to address many issues in diverse fields, primarily for providing secure and efficient health data management. Due to the presence of sensitive patient information, medical records, and confidential documents, the healthcare industry is particularly vulnerable to data privacy violations. Security breaches in this sector pose more serious risks than in other industries, as they can lead to significant malpractice and patient safety threats. As health care is digitized [1], the amount of data it involves has burgeoned, including electronic health records (EHRs), medical images, and related information. While this shift has increased the

* Corresponding author Deepak Upadhyay: Department of CSE, Graphic Era Hill University, Dehradun, India;
E-mail: deepaku.cse@gmail.com

accessibility of medical data and empowered informed decision-making through better analytic tools, it also adds layers of protection for these assets. It is hoped that blockchain technology has the potential to deliver a new kind of decentralized [2], immutable ledger system for all types of health data management and prevention through secure storage (in multiple locations) or transmission from one place to another so as not to fall prey to commercial pressure [3].

The heart of blockchain technology is a decentralized approach, the complete opposite of traditional central databases in healthcare [4]. Traditionally, patient data was stored in centralized repositories owned by healthcare providers or third-party organizations, leaving vast cybersecurity loopholes. A breach in any of these centralized systems can result in significant data loss and unauthorized access, leading to the leakage of sensitive health data and exposure of sensitive information, which may have serious implications for both patients and healthcare organizations [5]. Blockchain prevents these risks and involves disseminating data across a network of nodes in blockchain technology to avoid any one entity maintaining the entire dataset. This decentralized model not only improves data security but also helps prevent attacks, as there is no central point of attack and all information passes through multiple steps before storage [6].

Second, the intrinsic immutability of blockchain itself creates an enhanced barrier to health data management. Once information is added on the blockchain, it cannot be erased or changed, which makes it a permanent public record-keeping source. This is especially useful with something as important as health data, where patients' records must be kept accurate and untouched [7]. It is also impossible to tamper or falsify health records on the blockchain. All alterations are instantly detected because they must be verified and agreed upon by at least half of the participants before they can proceed. The immutability of blockchain, therefore, makes it a great tool to secure the veracity and lineage of medical data over time, reducing fraud risks while providing near real-time, accurate, and reliable information for patients/consumers, as doctors (as healthcare agents) should be doing [8].

There are many practical applications to this, with blockchain transparency levels enabling different standards of data accessibility. Health information is often fragmented and can be stored in separate systems or institutions, causing patients to be unable to access their own data, while also limiting healthcare providers' visibility into the patient's complete medical history [9]. By guaranteeing to carry out improvements, Blockchain can mitigate these issues by offering a single system of exchange and transparency for health data. With blockchain and smart contracts, records can be shared between authorized rights holders automatically; this empowers patients with greater ownership of their data while still equipping

healthcare providers with the information they need to service those same patients [10]. This not only increases care effectiveness but also the patient engagement with more control over their personal health information [11].

Adopting blockchain for health data management aligns well with the growing need to interoperate healthcare systems. Today, standardized protocols are largely absent, and different systems continue to live in tribal siloes of information, which often creates barriers for data exchange among varying healthcare providers or organizations [12]. Blockchain, decentralized and interoperable can act as a bridge between these systems, allowing the secure exchange of data across platforms. Blockchain streamlines operations in the healthcare industry by enabling data interoperability, reducing administrative overheads, and minimizing human errors through automatic record maintenance, among other benefits [4].

Nevertheless, while blockchain technology presents many benefits to health data management, adoption is not free of challenges. Scalability is one of the chief issues, since most blockchain networks are not built to accommodate the sheer volume of data that healthcare generates. And not to mention, the various data privacy and regulation-related problems require a lot of introspection as well. The transparency of blockchain carries significant advantages [7], but it raises questions about maintaining privacy and complying with rules such as HIPAA and GDPR in healthcare, given that the technology is inherently open. Solving these challenges will necessitate the involvement of technology providers, healthcare organizations, and government agencies working together to create compliant solutions that offer all the benefits a blockchain can provide while ensuring patient privacy [9].

To summarize, blockchain technology can surely improve the way health information is stored and processed by solving problems related to security issues. The decentralized, immutable, and transparent properties of this ledger make it increasingly desirable for efficiently protecting patient data and providing various healthcare providers with improved access to beneficial information across different systems. After all, while scalability and compliance issues still exist today [4], continued blockchain development in healthcare will almost certainly overcome these barriers to its use. With the landscape continuously evolving, blockchain is poised to transform health data management by more securely protecting patient information and making it accessible and reliable within an increasingly digital ecosystem [5].

CHAPTER 4

Ensuring Water Resilience in Smart Hospitals: The Role of AI in Crisis Management and Resource Optimization

Filippo Verre^{1,*}

¹ CMES - Center for Advanced Middle Eastern Studies, Lund University, Sweden

Abstract: Water resilience plays a critical role in ensuring uninterrupted function in modern hospitals. Disturbance to the supply of this precious material creates robust issues in care and patient safety. This chapter explores how AI with IoT-based solutions can be used to enhance water management further for sustainability and reliability of supply in smart hospitals to solve or even prevent water crises that could generate irreparable damage to the patients. With modern AI-powered IoT, monitoring and supply of quality water in real-time, predictive maintenance, and demand forecasts are not only possible but highly used on a global scale. Such a situation optimizes resource allocation and prevents failure of the system. In this research, a few case studies will be presented to illustrate the response mechanisms of smart technologies in cases of emergencies, including contamination or supply interruption challenges. Further, a discussion regarding ethical considerations dealing with data privacy and resource allocation equitably will be provided.

Keywords: AI-driven crisis management, Healthcare infrastructure, Resource optimization, Smart hospitals, Water resilience.

INTRODUCTION

Artificial intelligence, with its ability to analyse huge amounts of data and learn from it, is revolutionising how doctors and researchers approach disease diagnosis, treatment, and management. This evolution offers new perspectives generated by AI in healthcare, particularly concerning the main applications, benefits, and challenges related to integrating these advanced technologies into the healthcare system. The increasing amount of medical data available, coupled with the need to improve the efficiency and accuracy of care, has made the adoption of innovative solutions such as AI indispensable. By using powerful

* Corresponding author Filippo Verre: CMES - Center for Advanced Middle Eastern Studies, Lund University, Sweden; E-mail: filippo.verre@cme.lu.se

algorithms and machine learning techniques, AI can process and interpret complex data, providing decision support to healthcare professionals and contributing to more personalised and timely healthcare.

Initially, the first applications of AI in healthcare were limited to rule-based decision support systems, used primarily to improve operational efficiency and assist doctors with diagnoses. These systems were often rigid and limited by the quality and quantity of data available. However, they were an important first step towards automating and optimizing medical procedures. With the advent of machine learning and neural networks, AI has acquired the ability to analyze large volumes of data with greater accuracy and speed. These advances have enabled the development of algorithms that can learn autonomously from data, continuously improving their performance without requiring specific programming for each new situation. Practical applications of these technologies include medical image analysis, such as radiology and dermatology, where algorithms can detect anomalies with an accuracy comparable to that of human specialists.

In recent years, the integration of AI with other emerging technologies, such as the Internet of Things (IoT) and cloud computing, has further enhanced the ability to collect, manage, and analyze healthcare data. Wearable devices and smart sensors continuously collect data on patients' health, which is then analyzed in real time by AI algorithms to provide immediate and personalized feedback. AI is also revolutionizing medical research, accelerating the development of new medicines and therapies. Deep learning algorithms, for example, can analyze millions of chemical compounds to identify potential new prescriptions much faster than traditional methods. The evolution of AI in healthcare is an ongoing and rapidly accelerating process. New technologies promise to improve the diagnostic accuracy further, personalize treatments, and make the management of healthcare resources more efficient. However, this evolution also brings significant challenges, such as the need to ensure the security and privacy of patient data and address ethical issues related to the use of AI in clinical decisions. The evolution of AI in healthcare has already had a profound impact and promises to transform the way medicine is practiced and experienced radically.

One aspect of the sustainable management of modern healthcare facilities concerns the relationship between water resources and artificial intelligence. Nowadays, hospitals rely heavily on a continuous, safe water supply in order to maintain hygiene, safety, and functionality critical for patient care and medical procedures. Water resiliency, which is the ability to absorb and quickly recover from water supply disruption, has turned out to be one of the main focuses in healthcare facilities, especially given the fact that hospitals have recently been

adopting smart, technology-driven solutions. It is important to consider that ensuring water resilience involves not only maintaining operational stability but also entails safeguarding patient well-being, as water is used in almost every aspect of health delivery, from sterilization to sanitation and climate control.

This chapter will be divided into several sections that will analyze the close interconnection between the sustainable management of water resources in hospitals through the use of artificial intelligence. After the first section that is dedicated to the importance of water resilience in healthcare, the second section will follow that will address the close connection between AI and IoT in transforming water management in healthcare systems. In this section, the aim is to describe how the adoption of AI and Internet of Things technologies has radically and progressively transformed water management in healthcare by enabling hospitals to dynamically monitor, predict, and control water usage. Subsequently, a case study will be analyzed regarding the relationship between water and smart hospitals in the event of a water crisis. In this section, the aim is to answer some questions, including: 1) What is the reaction of the healthcare system in case of a water crisis with an approach based on artificial intelligence? 2) Can AI be a valid tool to prevent or predict crises of this type? Lastly, the concern over the relationship between the use of artificial intelligence in water resource management and privacy issues is discussed in the final section. Ethical and privacy issues have become extremely relevant as hospitals embrace AI and IoT in the management of water.

METHODOLOGY

In this book chapter, the research methodology relies on knowledge based on secondary sources, technical reports, and official documents. Such an approach synthesizes diverse forms of information into a comprehensive understanding of the role AI can play in water resilience for smart hospitals. This research method provides the latest insight into the rapidly changing landscape of AI and IoT applications in healthcare. Specifically, technical reports from technology providers add an interesting dimension to the applied solutions, innovations, and real-world case studies showing how AI and IoT technologies are currently employed to improve operational efficiency, predictive maintenance, and crisis response in healthcare facilities. The reports further assist in identifying best practices and new technologies specifically developed for water resilience in hospitals, highlighting their value to the practical feasibility of AI solutions.

The methodological approach represents a conceptual, multi-scale, and multi-layered process. As an attempt to organize insights from various documents into themes on AI-driven water monitoring, crisis management protocols, and

CHAPTER 5**Future Trends: AI And Cloud Innovations In Healthcare**

Ashutosh Bhatt^{1,*}, Ambika Aggarwal², Pooja Baloni¹ and Chandra Rawat³

¹ Himalayan School of Science and Technology, Swami Rama Himalayan University, Dehradun, Uttarakhand, India

² School of Computer Science, UPES, Dehradun, Uttarakhand, India

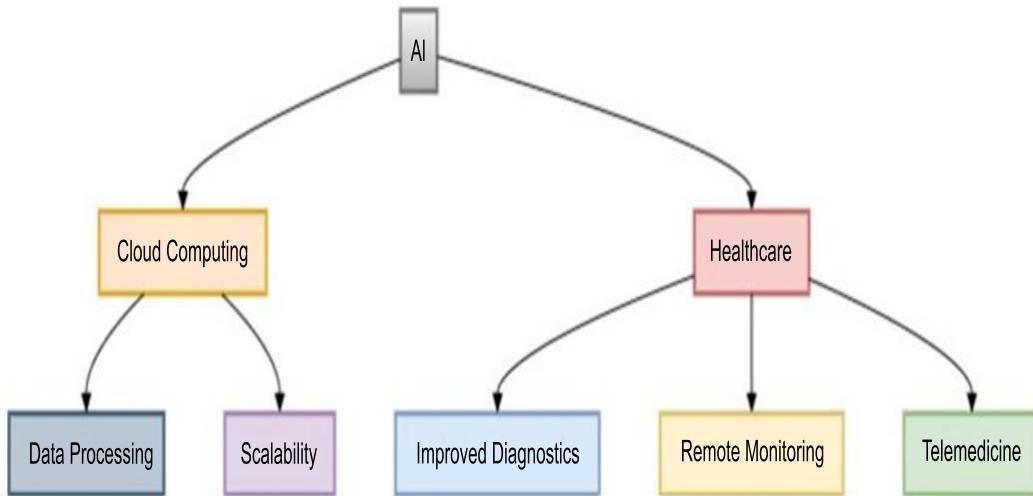
³ Department of Information Technology Services, Florida State University, Tallahassee, USA

Abstract: Amalgamation of AI & cloud computing brings a significant relevant change in healthcare, where they are providing assistance to the doctor by examining huge amounts of data in the medical discipline. This means with the help of these emerging technologies, experts can easily diagnose the disease in the early stage, provide better personalised cure plans, speed up the treatment, and the discovery of new drugs. Cloud computing is dedicated to keeping track of data securely with accuracy while sharing it with others. But, here it is important to focus on some issues like algorithm selection, authenticity, integrity, and security of the patients' data. Despite these concerns, AI and cloud machinery can really boost healthcare and help to create a better future with more proactive and personalised care for a healthy population. The operations of medical research, managing all aspects of patient care, and delivering the results with accuracy are evolving right now. This chapter highlights the impact of AI & cloud tech in the coming years to identify their fruitful effect in healthcare. In the bigger picture, these technologies strive to achieve remarkable changes with improvement in areas like instant drug discovery, medical imaging, virtual assistance, accurate prediction in smart health, early diagnosis, treatment, and cure. The healthcare cloud system is much more committed to delivering a structure that gives cost-effective, secure, and shareable services in healthcare along with advanced disaster recovery plans using AI tools and techniques. The real revolution with amazing possibilities can occur with the help of AI & CC (Cloud Computing) if we can provide better ways to handle population health using precise public health strategies, data processing in real-time and executing the services like AI-as-a-service (AIaaS).

Keywords: AI-as-a-Service (AIaaS), AI, Cloud computing, Data integration, Healthcare innovation, Natural Language Processing (NLP).

* Corresponding author Ashutosh Bhatt: Himalayan School of Science and Technology, Swami Rama Himalayan University, Dehradun, Uttarakhand, India; E-mail: ashutoshbhatt15@gmail.com

INTRODUCTION


Artificial intelligence (AI) and cloud computing have transformed the healthcare sector by enabling a new era of services, driving innovations, and ushering in breakthroughs in medical research [1], patient care, and operational efficiency. This chapter will reveal the essence of future developments, such as the detailed impact and insights into AI and cloud innovations in medical care [2]. This chapter explores the future trends of AI and cloud innovations in healthcare, detailing their impacts and providing insights into the potential future of healthcare.

The Role of AI in Healthcare

The ability of artificial intelligence to analyze enormous volumes of data, spot trends, and make remarkably accurate predictions has made it a potent weapon in the healthcare industry. Healthcare is about to undergo a revolution in a number of important areas thanks to AI's capacity to process and comprehend large, complicated datasets [3]. AI algorithms are used in personalized medicine to evaluate lifestyle, environmental, and genetic data in order to create individualized treatment regimens that maximize benefits and minimize side effects for each patient. AI models are truly remarkable. They can identify the potential development of cancer cells and artery blockages through pattern recognition [4], enabling early detection. This leads to better patient outcomes in a more cost-effective manner. Early diagnosis and predictive analysis can be done quickly and accurately with the help of medical tests like CT scans, X-rays, MRI, etc. Extraction of useful features from unstructured medical records is made possible by NLP, enabling healthcare providers to make better decisions and prescribe the right medications in a timely manner. Here, virtual healthcare assistance plays a meaningful role. It reduces the time and cost required to develop new drugs by predicting how different chemicals will interact with biological targets. Finally, wearable device data is analyzed by AI-powered remote monitoring systems to deliver real-time health insights and facilitate prompt treatments, which are especially helpful in controlling chronic illnesses [5]. Fig. (1) depicts the role of AI and Cloud in the healthcare sector.

OBJECTIVES

1. Explore the impact of AI in healthcare.
2. Investigate cloud computing innovations in healthcare.
3. Analyze the convergence of AI and cloud computing.
4. Forecast future trends and scenarios.
5. Evaluate the challenges and ethical considerations.
6. Gain practical insights and recommendations

Fig. (1). Role of AI and cloud in healthcare.

AI in Healthcare

We need to learn how AI systems evaluate various datasets to improve early diagnosis, speed up drug development, and improve personalized care, and also analyze how artificial intelligence (AI) is used in virtual health assistants, natural language processing (NLP), and medical imaging [6]. Table 1 describes the impacts of AI in healthcare as shown in Fig. (2).

Table 1. Impact of AI in healthcare.

S.N	Impact	Description	Example
1	Personalized Medicine	To create individualized treatment regimens, AI systems examine genetic, environmental, and lifestyle data.	AI is used by IBM Watson for Oncology to evaluate patient data and offer individualized therapy suggestions for cancer.
2	Early Diagnosis and Predictive Analytics	AI algorithms find patterns in medical data to forecast a disease's onset before symptoms show up.	Forty-eight hours before acute kidney damage happens, Google's DeepMind AI anticipates it, enabling early intervention.
3	Medical Imaging	AI improves medical picture interpretation speed and accuracy.	Zebra Medical Vision detects anomalies in medical imaging using artificial intelligence.

SUBJECT INDEX

A

- Accuracy 24, 25, 26, 27, 45
- Administrative Efficiency 70, 71, 75
- Advanced Analytics 68, 70, 71
- Alerts and Monitoring 12, 37, 48, 50
- Algorithms 3, 4, 5, 6, 8, 10, 11, 12, 18, 19, 20, 21, 23, 24, 26, 27, 28, 34, 36, 46, 48, 54, 56, 64, 67, 68, 69, 70
- AI 3, 4, 6, 10, 11, 12, 20, 23, 24, 46, 54, 56, 69, 70
- Deep Learning 5, 18, 21, 27, 28, 34, 48, 64, 67, 70
- Machine Learning 3, 5, 8, 24, 48, 68, 70
- Named Entity Recognition (NER) 18, 19, 21, 26, 27, 28
- Proof of Work (PoW) 36
- Anomaly Detection 19, 21, 50
- Artificial Intelligence (AI) 1, 2, 3, 4, 5, 6, 12, 13, 14, 23, 34, 45, 46, 47, 48, 66, 67, 71, 72, 75
- Healthcare applications 1, 2, 3, 4, 5, 6, 12, 13, 14, 23, 46, 47, 48, 66, 67
- Integration 1, 2, 3, 34, 45, 47, 48, 71, 72, 75
- Artificial Neural Network (ANN) 67
- Authentication and Access Control 35, 75

B

- BERT and BioBERT 21, 27, 28, 29, 30
- Bias and Fairness 13, 14, 30, 71, 73
- BigData 20, 30, 34, 70
- Blockchain Technology 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45
- Data Integrity 34, 37, 38, 42
- Decentralization 34, 35
- Immutability 34, 35, 41, 45
- Security 34, 35, 36, 39, 40, 41, 45
- Smart Contracts 36, 38, 39
- Transaction Throughput 33, 36, 37, 41
- BlueBERT 18, 28, 29, 30
- Breast and Lung Cancer Detection 45

Prabhishhek Singh, Manoj Diwakar, Neeraj Kumar Pandey, Amit Kumar Mishra & Indrajeet Gupta (Eds.)
All rights reserved-© 2026 Bentham Science Publishers

C

- Challenges 13, 14, 15, 29, 30, 35, 40, 43, 44, 45, 50, 51, 71, 72, 73, 74
- Data Privacy 13, 15, 29, 30, 72
- Ethical Concerns 13, 15, 50, 51, 71, 73, 74
- Implementation 14, 29, 30, 35, 43, 44, 71
- Interoperability 13, 35, 40, 43, 44
- Scalability 35, 43, 44, 45
- Chatbots and Virtual Assistants 11, 12, 66, 67
- Clinical Decision Support Systems 4, 5, 11, 12, 20, 22, 48
- Clinical Document Classification 22
- Clinical Evaluation Metrics 24, 25
- Cloud Computing 66, 68, 69, 70, 71, 72, 73, 75, 76, 77
- Architecture 68, 69, 70
- Benefits 66, 68, 69, 70, 71, 76, 77
- Challenges 72, 73
- Data Integration 68
- Security and Compliance 69, 75
- Cloud Platforms 68, 70, 71, 72
- Computerized Physician Order Entry (CPOE) 45
- Convergence of AI and Cloud 70, 71, 72, 73
- Cryptographic Security 36, 39, 75
- Cybersecurity 24, 35, 39, 45, 73

D

- Data Breaches 34, 35, 39, 42
- Data Collection and Processing 11, 12, 20, 21, 36
- Data Integration and Interoperability 68, 70, 71
- Data Privacy 2, 13, 14, 15, 18, 29, 30, 34, 35, 44, 48, 52, 54, 73, 74
- Data Security 13, 14, 15, 29, 30, 32, 34, 35, 36, 39, 41, 44, 72, 75
- Database Management 10, 11, 20
- Decision Making 2, 4, 5, 6, 11, 12, 19, 20, 22, 24, 27, 29, 48, 56, 73

Subject Index

- Deep Learning Models 5, 18, 21, 27, 28, 30, 48, 66, 70
- LSTM (Long Short-Term Memory) 18, 21, 27, 28
- Recurrent Neural Networks (RNNs) 21, 27, 28
- Transformers 18, 21, 27, 28
- Dementia Patient Care 7
- Diabetes Monitoring 2, 12, 52
- Diagnosis and Diagnostics 4, 5, 11, 22, 23, 24, 25, 27, 45, 56, 67, 68, 72
 - Accuracy 4, 5, 24, 25, 27, 56, 67, 68
 - Prediction 4, 5, 11, 23, 24, 45, 67, 72
- Disease Identification 22, 25
- Disaster Recovery 68, 69
- Discharge Summaries 18, 19, 22, 23, 30
- Disease Prevention 2, 4, 11, 12, 45, 52
- Domain Adaptation 18, 29, 30
- Drug Discovery 5, 23, 45, 67, 68, 71

E

- Electronic Health Records (EHRs) 2, 3, 10, 18, 19, 20, 22, 23, 24, 30, 33, 34, 35, 70, 74
- Encryption and Data Protection 32, 35, 36, 38, 39, 44, 69, 75
- Energy Consumption 33, 37, 40, 41, 42, 43
- Ethical Frameworks 13, 14, 15, 30, 44, 45, 50, 52, 71, 73, 74
- Explainable AI 5, 30

F

- F1-Score 24, 25
- Failure Modes 37
- Fairness in AI 13, 71, 73
- Fall Detection Systems 7
- Federated Learning 30
- Flu Monitoring 7
- Future Directions 18, 30, 31
 - Zero-Shot Learning 18, 30, 31
 - Self-Supervised Learning 18, 30
- Multilingual Data Handling 30

G

- Genetic Data Analysis 44, 72, 74
- Google Cloud Healthcare API 68, 70

Smart Healthcare: Leveraging AI and Cloud 81

- GDPR (General Data Protection Regulation) 29, 30, 44, 69, 72
- Graph Models 31

H

- Healthcare Access 2, 3, 4, 5, 6, 14, 15, 48, 52, 73
- Healthcare Infrastructure 48, 50
- Healthcare Operations 11, 39, 48, 52
- Health Data Exchange 34, 35, 36, 37, 38, 40
- Health Information Systems 7, 13, 43, 44
- HIPAA (Health Insurance Portability and Accountability Act) 19, 29, 30, 34, 44, 69, 72, 75
- Holistic Health Management 52
- Home Care Technology 6, 7
- Hospital Operations 48, 50, 52
- Hypertension Management 2, 12, 52

I

- Infection Prediction 8
- Information Extraction 19, 20, 22, 30
- Informed Consent 13, 14, 15, 30, 50, 73, 74
- Infrastructure Development 43, 44, 45, 72
- Interoperability 13, 35, 40, 43, 44, 68, 70, 71
- Internet of Things (IoT) 12, 48, 49, 50, 51, 52, 66, 72

J

- Job Displacement 71

K

- Knowledge Extraction 26, 28

L

- Latency in Data Retrieval 41, 43
- Legal and Regulatory Compliance 13, 14, 29, 35, 42, 44, 69, 72, 75
- LSTM Networks 18, 21, 27, 28
- Long-range Dependencies 27, 28

M

- Machine Learning Applications 3, 5, 8, 24, 25, 48, 68, 70
 - Support Vector Machines (SVM) 3, 5
 - Decision Trees 5
 - Ensemble Methods 25
- Mayo Clinic Case Study 23
- Medical Coding 26
- Medical Imaging Analysis 5, 8, 19, 21, 23, 27, 45, 66, 67, 70, 74
- Medical Language Processing 19, 21, 29
- Medical Ontologies 26
- MetaMap Tool 26, 27
- Model Evaluation and Validation 10, 24, 25, 26, 27
- Mobile Applications 11, 12
- Monitoring Technologies 7, 11, 12, 48, 50, 52, 72
- Multilingual NLP 30

N

- Named Entity Recognition (NER) 18, 19, 21, 26, 27, 28
- Natural Language Processing (NLP) 5, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 48, 66, 67
- Network Architecture 37, 43, 44, 45
- NLTK (Natural Language Toolkit) 26
- Nuance Dragon Medical 67
- Nursing Homes 5, 7

O

- Operational Efficiency 12, 19, 20, 48, 52, 56, 75, 77
- Optimization Techniques 42, 43, 45, 49, 51, 52

P

- Patient Consent 50, 52, 73, 74
- Patient Data Security 29, 30, 44, 73, 74
- Patient Engagement 2, 3, 6, 12, 15, 48
- Patient Monitoring Devices 11, 12
- Patient Outcomes 2, 4, 5, 6, 12, 14, 15, 23, 28, 29, 45, 48, 57, 71, 72, 74
- Patient Privacy 13, 14, 15, 44, 50, 52, 73, 74

- Pay-as-you-go Model 69, 74
- Performance Metrics 24, 25, 26, 36, 37, 41, 43
- Personalized Healthcare 2, 3, 4, 6, 11, 12, 15, 27, 45, 66, 67, 71, 72, 74, 75
- Personalized Medicine 66, 67, 68, 71, 72
- Pfizer Drug Discovery 23
- PHI (Protected Health Information) 29
- Physician Notes 18, 19, 21, 25
- Population Health Management 71, 72
- Precision and Recall 24, 25
- Predictive Analytics 2, 3, 4, 11, 12, 23, 45, 66, 67, 68, 71, 72, 75
- Preventive Care 11, 52, 74
- Privacy Protection 13, 14, 15, 29, 30, 44, 45, 48, 50, 52, 73, 74

Q

- Quality Assurance 25, 26, 45, 48
- Quality of Service 45

R

- Radiology Reports 18, 19, 20, 22, 23, 27
- Real-time Data Collection 11, 12, 48, 49, 50, 52, 74
- Real-time Monitoring 11, 12, 50, 52, 75
- Recommendation Systems 11, 12
- Remote Consultation 2, 3, 4, 5, 6, 12
- Remote Healthcare 6, 7, 8, 9
- Remote Patient Monitoring (RPM) 2, 3, 4, 5, 6, 11, 12, 13, 15, 48, 66, 67, 68, 71, 72, 75
- Renewable Energy 65
- Research Collaboration 23, 45, 56, 68, 69, 70, 71
- Resource Allocation 48, 50, 51, 52, 72
- Resource Optimization 48, 50, 52
- Risk Assessment 2, 4, 11, 12, 23, 25, 45, 52

S

- Safety Protocols 48, 50, 52
- Scalability Issues 35, 42, 43, 44, 45, 72
- Scikit-learn 26
- Security Breaches 33, 34, 35, 39, 41
- Security Mechanisms 34, 35, 36, 39, 41, 45, 72
- Security Standards 38, 39, 40, 42, 45, 69, 75
- Self-Discharge 9

Subject Index

Self-Supervised Learning 18, 30
Sentiment Analysis 31
Sepsis Prediction 23, 45
Service Interruption 49, 50, 52
Sharding Techniques 43, 44
Smart Contracts 35, 36, 38, 39, 40, 42
Smart Devices 5, 11, 12
Smart Home Technology 6, 7
Smart Hospitals 47, 48, 49, 50, 51, 52
Smart Meters 51
Spacy NLP Tool 26
Spell Variation Handling 19, 21
Standard Protocols 13, 35, 42, 43, 44, 45
Storage Solutions 34, 37, 68, 70, 74, 75, 77
Structured and Unstructured Data 18, 19, 20, 21, 22, 30
Supply Chain Management 52, 71
Supply Interruption 47, 49, 50, 52
Sustainability 48, 49, 52, 56, 72
Symptom Recognition 22, 25
Syntactic Parsing 21

T

Tamper Detection 37, 38, 41, 42
Telehealth 2, 3, 4, 5, 6, 11, 12, 13, 14, 15, 48, 66, 68, 71, 72, 75
Benefits 2, 3, 4, 5, 6, 12, 15
Challenges 5, 13, 14, 15
Implementation 2, 11, 12, 13
Telemedicine 2, 3, 4, 5, 6, 11, 12, 48, 66, 67, 68, 71, 75
Text Classification 20, 22, 26
Thermal Energy Storage (TES) 75
Tokenization 18, 19, 20, 21, 26, 27, 30
Transaction Management 36, 37, 40, 41, 43
Transparency 13, 14, 15, 30, 35, 44, 50, 73, 74, 75
Treatment Plans 2, 3, 4, 5, 6, 11, 12, 20, 23, 27, 45, 56, 67, 68, 72, 74
Trust and Reliability 35, 45, 48, 52, 73, 74, 75

U

UMLS (Unified Medical Language System) 26, 27
Unauthorized Access 34, 35, 39, 72
Unstructured Data 18, 19, 20, 21, 22, 23, 30

Smart Healthcare: Leveraging AI and Cloud 83

V

Validation and Testing 10, 25, 26, 27, 42, 43, 45
Vector Representations 21, 27
Vital Signs Monitoring 2, 3, 11, 12, 48, 50, 52, 72
Virtual Assistants 11, 12, 66, 67

W

Water Contamination 47, 48, 49, 50, 52
Water Management 47, 48, 49, 50, 51, 52
Water Quality 48, 50, 52
Water Resilience 47, 48, 49, 50, 51, 52, 56
Water Supply 47, 48, 49, 50, 52
Wearable Devices 5, 11, 12, 48, 50, 66, 70, 72, 74
Word Embeddings 21, 27
GloVe 21
Word2Vec 21
World Health Organization (WHO) 45

Z

Zero-Knowledge Proofs 44
Zero-Shot Learning 18, 30, 31
Zebra Medical Vision 66

Prabhisek Singh

Dr. Prabhisek Singh (Senior IEEE) is an Associate Professor in the School of Computer Science Engineering and Technology at Bennett University, Greater Noida. Listed among the World's Top 2% Scientists (2024–2025) by Stanford University and Elsevier, he also serves as Honorary Adjunct Faculty at the Maryam Abacha American University of Nigeria. He holds a Ph.D. in Computer Science from BBAU and an M.Tech from CDAC Noida. His research focuses on image processing, computer vision, and deep learning. Dr. Singh has published over 240 papers and serves in editorial roles for leading SCI/SCIE/Scopus-indexed journals.

Manoj Diwakar

Dr. Manoj Diwakar is a Professor in the Department of Computer Science and Engineering at Graphic Era (Deemed to be University), Dehradun. Recognized in the World's Top 2% Scientists list by Stanford University and Elsevier, he is a leading researcher in AI and Intelligent Healthcare Systems. He holds a Ph.D. in Computer Science and has extensive experience in teaching, research, and academic leadership. His expertise spans AI, ML, Deep Learning, Computer Vision, Biomedical Image Analysis, IoT, and Smart Healthcare. He has published widely, served in key editorial roles, and organized numerous conferences, workshops, and FDPs. He also supervises Ph.D. scholars and funded research projects.

Neeraj Kumar Pandey

Dr. Neeraj Kumar Pandey is an Associate Professor in the Department of Computer Science & Engineering at Graphic Era (Deemed to be) University, Dehradun. He holds a Ph.D. in Computer Science and Engineering and has over fifteen years of academic and industry experience. His research interests include Cloud Computing, Computer Vision, and Deep Learning. Dr. Pandey has authored more than 100 research papers and holds ten patents. He has also edited books with Springer, Bentham Science, and CRC and is a member of IEEE, CSTA, ERDA, and IAENG.

Amit Kumar Mishra

Dr. Amit Kumar Mishra is an Associate Professor in the Department of Computer Science and Engineering at Graphic Era Hill University, Dehradun, and also serves as Head-in-Charge for B.Tech First Year. He holds a Ph.D. in Computer Science and dual M.Tech degrees in Information Security & Management and Computer Science & Engineering. His research focuses on Information Security, IoT, Blockchain, remote user authentication, and cloud computing. He has published more than ninety research papers and is an active member of IEEE, ACM, and CSI.

Indrajeet Gupta

Dr. Indrajeet Gupta is a Professor in the School of Computer Science & Engineering at Galgotias University, Greater Noida. He earned his Ph.D. in Computer Science & Engineering from IIT (ISM) Dhanbad with a specialization in cloud task scheduling. With over 13 years of academic and administrative experience, he has previously served as Professor and Dean at major institutions. His interests include Cloud Computing, AWS, DevOps, Containers, and Docker. Dr. Gupta has published extensively, secured patents, delivered invited talks and keynotes, and is a professional member of IEEE and ACM.