POLYMERS IN MODERN MEDICINE Part 2

Editors: Sachin Namdeo Kothawade Vishal Vijay Pande

0

Bentham Books

Polymers in Modern Medicine (Part 2)

Edited by

Sachin Namdeo Kothawade

Department of Pharmaceutics SCSSS's Sitabai Thite College of Pharmacy Shirur-412210, Dist-Pune, Maharashtra, India

&

Vishal Vijay Pande

RSM's N. N. Sattha College of Pharmacy Ahmednagar-414001, Maharashtra, India

Polymers in Modern Medicine (Part 2)

Editors: Sachin Namdeo Kothawade & Vishal Vijay Pande

ISBN (Online): 978-981-5322-37-8

ISBN (Print): 978-981-5322-38-5

ISBN (Paperback): 978-981-5322-39-2

© 2024, Bentham Books imprint.

Published by Bentham Science Publishers Pte. Ltd. Singapore. All Rights Reserved.

First published in 2024.

BENTHAM SCIENCE PUBLISHERS LTD.

End User License Agreement (for non-institutional, personal use)

This is an agreement between you and Bentham Science Publishers Ltd. Please read this License Agreement carefully before using the ebook/echapter/ejournal (**"Work"**). Your use of the Work constitutes your agreement to the terms and conditions set forth in this License Agreement. If you do not agree to these terms and conditions then you should not use the Work.

Bentham Science Publishers agrees to grant you a non-exclusive, non-transferable limited license to use the Work subject to and in accordance with the following terms and conditions. This License Agreement is for non-library, personal use only. For a library / institutional / multi user license in respect of the Work, please contact: permission@benthamscience.net.

Usage Rules:

- 1. All rights reserved: The Work is the subject of copyright and Bentham Science Publishers either owns the Work (and the copyright in it) or is licensed to distribute the Work. You shall not copy, reproduce, modify, remove, delete, augment, add to, publish, transmit, sell, resell, create derivative works from, or in any way exploit the Work or make the Work available for others to do any of the same, in any form or by any means, in whole or in part, in each case without the prior written permission of Bentham Science Publishers, unless stated otherwise in this License Agreement.
- 2. You may download a copy of the Work on one occasion to one personal computer (including tablet, laptop, desktop, or other such devices). You may make one back-up copy of the Work to avoid losing it.
- 3. The unauthorised use or distribution of copyrighted or other proprietary content is illegal and could subject you to liability for substantial money damages. You will be liable for any damage resulting from your misuse of the Work or any violation of this License Agreement, including any infringement by you of copyrights or proprietary rights.

Disclaimer:

Bentham Science Publishers does not guarantee that the information in the Work is error-free, or warrant that it will meet your requirements or that access to the Work will be uninterrupted or error-free. The Work is provided "as is" without warranty of any kind, either express or implied or statutory, including, without limitation, implied warranties of merchantability and fitness for a particular purpose. The entire risk as to the results and performance of the Work is assumed by you. No responsibility is assumed by Bentham Science Publishers, its staff, editors and/or authors for any injury and/or damage to persons or property as a matter of products liability, negligence or otherwise, or from any use or operation of any methods, products instruction, advertisements or ideas contained in the Work.

Limitation of Liability:

In no event will Bentham Science Publishers, its staff, editors and/or authors, be liable for any damages, including, without limitation, special, incidental and/or consequential damages and/or damages for lost data and/or profits arising out of (whether directly or indirectly) the use or inability to use the Work. The entire liability of Bentham Science Publishers shall be limited to the amount actually paid by you for the Work.

General:

^{1.} Any dispute or claim arising out of or in connection with this License Agreement or the Work (including non-contractual disputes or claims) will be governed by and construed in accordance with the laws of Singapore. Each party agrees that the courts of the state of Singapore shall have exclusive jurisdiction to settle any dispute or claim arising out of or in connection with this License Agreement or the Work (including non-contractual disputes or claims).

^{2.} Your rights under this License Agreement will automatically terminate without notice and without the

need for a court order if at any point you breach any terms of this License Agreement. In no event will any delay or failure by Bentham Science Publishers in enforcing your compliance with this License Agreement constitute a waiver of any of its rights.

3. You acknowledge that you have read this License Agreement, and agree to be bound by its terms and conditions. To the extent that any other terms and conditions presented on any website of Bentham Science Publishers conflict with, or are inconsistent with, the terms and conditions set out in this License Agreement, you acknowledge that the terms and conditions set out in this License Agreement shall prevail.

Bentham Science Publishers Pte. Ltd. 80 Robinson Road #02-00 Singapore 068898 Singapore Email: subscriptions@benthamscience.net

CONTENTS

FOREWORD	i
PREFACE	ii
LIST OF CONTRIBUTORS	iii
CHAPTER 1 POLYMERS USED IN PERSONALIZED MEDICINES	
Sahebrao Boraste, Kartiki Bhandari, Deeliprao Derle and Prashant Pingale INTRODUCTION	
Introduction to Polymers used in Personalized Medicines	
Types of polymers used in personalized medicines	
Thermo-Responsive Polymers	
Photo-responsive Polymers	
Self-repairing Polymers	
Shape-memory Polymers (SMPs)	
Common Polymers used in Personalized Medicines	
Polyvinyl Alcohol (PVA)	
Case Study	
Polylactic Acid (PLA)	
Polycaprolactone (PCL)	
Applications of Polymers used in Personalized Medicines	
3-D Printing	
S-D Frinning	
Cell Therapy CONCLUDING REMARKS	
REFERENCES	
CHAPTER 2 POLYMERIC HYDROGELS IN MEDICINE Popat Mohite, Shubham Munde, Vrushali Gokhale, Shweta Marade, Shreya Chauhan, Vaibhav Wagh and Jayprakash Suryawanshi INTRODUCTION	
POLYMERIC HYDROGEL PROPERTIES	
Chemical Structure and Composition	
SOURCE	31
Natural Polymers	
HYBRID HYDROGEL	
PREPARATION	
Co-polymer Hydrogel	
Homopolymer Hydrogels	
CROSSLINKING	
Physical Crosslinking	
Chemical Crosslinking	
PHYSICAL CHARACTERISTICS	
Responsive Behaviour: Swelling	
SYNTHESIS AND FABRICATION TECHNIQUE	
Physically Cross-Linked Hydrogels	
Chemically Cross-Linked Hydrogels	
By Hydrogen Bonds	
Free Radical Polymerization	
Ionic-Mediated Gelation	
Ionic Interaction	

Polymer Solution Heating/Cooling	39
Irradiation Polymerization	
Heating-cooling	
Photocrosslinking	
Enzymatic-induced Crosslinking	
The Solution Polymerization/Crosslinking	
Bioprinting in 3D	
Solution Polymerization in Water	
Layer-by-Layer [LbL] Fabrication	
In Situ Injection Molding	
Ionotropic Gelation and Polyelectrolyte Complexation	
BIOCOMPATIBILITY AND BIOFUNCTIONALITY	
Interaction with Biological Systems	
Tuning Biocompatibility for Specific Applications	
Incorporation of Bioactive Agents	
APPLICATIONS IN MEDICINE	
Hydrogel Applications in Medication Delivery Systems	
Case Study	
Tissue Engineering and Regenerative Medicine	
Case Study	
Wound Healing and Bandages	
Case Study	
Surgical Sealants and Adhesives	
Case Study	
CHALLENGES AND SOLUTIONS	
CASE STUDIES AND SUCCESS STORIES	
Case Study 1	
Case Study 2	
Case Study 3	
Case Study 4	
Success Stories	
CONCLUDING REMARKS	
ABBREVIATIONS	
REFERENCES	
CHAPTER 3 BIOPOLYMERS IN MEDICINE	74
Sachin Namdeo Kothawade, Shankar M. Dhobale, Kunal G. Raut, Sandesh S. Bole,	
Prashant B. Patil and Vijaykumar S. Wakale	
INTRODUCTION	75
CLASSIFICATIONS OF POLYSACCHARIDES	
BIOPOLYMERS	
Sodium Alginate Biopolymer	
Calcium Alginate Biopolymer	
÷	
Extraction of Alginate	
Properties	
Applications	
Chitosan	
Chemical Properties of Chitosan	
Biological Properties of Chitosan	
Commercial Brand Name of Chitosan	
Applications	83

Collagen and Gelatin	83
Practical Attributes of Gelatin and Collagen	
Applications	
Biological Properties	
Physiological Properties	
Hydrocolloids	
Applications	
Catgut	
Branan Ferulate	
Superabsorbent Fibers	
Resorbable Fibers	
CONCLUDING REMARKS	
REFERENCES	90
CHAPTER 4 POLYMER-BASED NANOMEDICINE FOR CANCER THERAPY	96
Darshan Telange, Manjusha Bhange and Anil Pethe	
INTRODUCTION	96
ADVANTAGES OF NANOPARTICLE USAGE IN CHEMOTHERAPY	
Targeted Drug Delivery	
Improved Pharmacokinetics	
Enhanced Cellular Uptake	
Multifunctionality	
Overcoming Biological Barriers	
Reduced Systemic Toxicity	
Combination Therapy	
Personalized Medicine	
CHARACTERIZATION OF DRUG DELIVERY SYSTEM WITH CANCER THERAPY	99
Physical Characterization	
-	
Biological Characterization	
POLYMER-LIGAND NANOCARRIERS FOR TARGETED CANCER THERAPY	
COMBINED DRUG DELIVERY AND IMAGING	
CLINICAL STATUS OF POLYMERIC NANOMEDICINE	
COMBINED PHOTODYNAMIC THERAPY AND IMAGING	
APPLICATIONS OF POLYMERIC NANOPARTICLES IN CANCER THERAPY	
CONCLUDING REMARKS	
REFERENCES	108
CHAPTER 5 POLYMERS IN DIAGNOSTICS	111
Ashish Y. Pawar, Shubhangi N. Albhar, Sachin Namdeo Kothawade and Deepak D.	
Sonawane	
INTRODUCTION	. 112
POLYMER-BASED SENSORS	
Natural Polymer-Based Sensing Gadgets	
Synthetic Polymer-Based Sensing Gadgets	
Polymers with Molecular Imprinting (MIPs)	
Biocompatible Polymers	
Acrylate Polymer	
EVOH Polymers	
Conducting Polymers	
Polymer Nanocomposites	
Polymer Inclusion Membranes	
LAB-ON-A-CHIP	122

What Exactly is a Lab-on-a-chip?	122
Advantages of LoC	
Applications of LoC	
Lab-on-a-chip and Molecular Biology	
Lab-on-a-chip and Proteomics	
Lab-on-a-chip and Cell Biology	
Lab-on-a-chip Technology and Chemistry	
POLYMER-MEDIATED IMAGING AGENTS	
Magnetic Resonance Imaging	
Nuclear Tomographic Imaging	
Ultrasound Imaging	
CONCLUDING REMARKS	
REFERENCES	
CHAPTER 6 POLYMER-BASED VACCINES	13:
Bhushan R. Rane, Vaibhav L. Patil, Nandini R. Mhatre, Aditi P. Padave, Nikita P.	
Mane, Mayur R. Gavit, Dinesh S. Mutkule, Sanskruti S. Gawade, Aarti V. Udmale,	
Puja P. Chaure and Ashish S. Jain	
INTRODUCTION	
History	13
POLYMER	13
Type of Polymers used in Vaccine	
Natural Polymer	13
Synthetic Polymer	
VACCINE	
Different Types of Vaccines	
Live Attenuated Vaccines	
Inactivated Vaccines	
Subunit, Recombinant, Polysaccharide, and Conjugate Vaccines	
Toxoid Vaccines	
ADJUVANT USED IN VACCINE	
Immune Potentiators	
TLR1/2 Agonists	
TLR3 Agonists	
TLR4 Agonists	
TLR5 Agonists	
TLR7/8 Agonists	
TLR9 Agonists	
Delivery Systems	
Mineral Salts	
Emulsions	
MF59	
AS03	
Microparticles	
Virus-like Particles	
Virosomes	
APPLICATIONS OF POLYMER IN VACCINE	
Polymer-based Nanosystems in the Delivery of Vaccine	
Micelles	
PLGA Based Some Other Nanoparticles	
Sustained-release Systems for Hormones	

	Immunopotentiation
	Polymers for Improvement of Autoimmune Responses
	Polymeric Carriers Specifically in Cell Targeting and Tissue Targeting
	Stimuli-responsive Polymers for Delivery of Vaccine
PA	FENTED FORMULATION
	ΓURE PERSPECTIVE
	NCLUDING REMARKS
	FERENCES
	ER 7 POLYMERIC APPROACHES IN REGENERATIVE MEDICINES
	at Mohite, Govind Asane, Ramesh Bhusal, Ritika Mishra, Namrata Navale,
	desh Bole and Rashmi Tambare
INI	RODUCTION
	Significance of Polymeric Materials in Tissue Engineering and Regeneration
DES	SIGNING POLYMERIC SCAFFOLDS FOR TISSUE REGENERATION
	Natural Polymer
	Protein as Biomaterial
	Polysaccharide as Biomaterial
	Synthetic Polymer
	Poly (ethylene glycol)
	Polyurethanes
	Hybrid Polymeric Systems and Smart Polymers
	Hybrid Polymers
	Smart Polymers
SCA	AFFOLD DESIGN AND FABRICATION TECHNIQUES
	3D Printing
	Bioprinting
	Electrospinning and Nanofiber-based Scaffolds
	Microfluidic Technology
	Micropatterning Technology
PO	LYMERIC NANOMATERIALS FOR DRUG DELIVERY IN REGENERATIVE
	DICINE
NA	NOPARTICLES FOR CONTROLLED DRUG RELEASE
	A) Polymeric Nanoparticles
	B) Ceramic Nanoparticles
	C) Metal Nanoparticles
	D) Liposomes
	E) Dendrimers
	F) Solid lipid nanoparticles
PO	LYMERIC MICELLES AND NANOGELS
	Polymeric Micelles
	Polymeric Micelle Types
	Nanogels
	Classification of Nanogels [65]
тн	ERMOSTATIC APPROACHES: COMBINING DRUG DELIVERY AND IMAGIN
	LYMERIC HYDROGELS IN REGENERATIVE MEDICINE
10	Injectable Hydrogels for Tissue Filling and Repair
	Responsive Hydrogels for On-Demand Release
	Hydrogels with Temperature Response
	Hydrogels with Temperature Response pH-responsive Hydrogel

Induced a That Dear and to Deday	198
Hydrogels That Respond to Redox	
Enzyme Responsive Hydrogel	200
Hydrogel Composites and their Biomedical Applications	
APPLICATIONS IN SPECIFIC TISSUES AND ORGANS	
Cardiac Tissue Engineering	202
Bone Regeneration	203
Neural Tissue Engineering and Nerve Regeneration	204
Case Study	205
Soft Tissues	205
Case Study	206
Tendon Tissue Engineering	206
Case Study	206
IMMUNOMODULATION AND HOST RESPONSE	207
Polymeric Approaches to Modulate Immune Responses	207
Antigen Presenting Cells (APC)	
APCs for Immunostimulation	207
T-Cells	208
T Cells for Immunostimulation	208
Polymers as Immunological Attenuators	208
Host-Material Interactions and Biocompatibility	209
Strategies for Minimizing Inflammation and Promoting Integration	
CLINICAL TRANSLATION AND CHALLENGES	
Challenges	
FUTURE PERSPECTIVES AND INNOVATIONS	213
CONCLUDING REMARKS	214
ABBREVIATIONS	214
REFERENCES	217
SUBJECT INDEX	447

FOREWORD

As we stand at the forefront of medical innovation, the integration of polymers into modern medicine heralds a new era of possibility and advancement. In the pages of this forthcoming book, "POLYMERS IN MODERN MEDICINE", edited by Dr. Sachin Namdeo Kothawade and Dr. Vishal Vijay Pande, we embark on a journey through the intricate intersections of polymer science and medical practice.

Within these chapters, a mosaic of knowledge unfolds, revealing the pivotal roles polymers play in various facets of modern healthcare. From polymeric biomaterials shaping the landscape of regenerative medicine to the precision of polymer nanotechnology in targeted drug delivery, each chapter unveils the boundless potential of polymer-based solutions.

The scope of this compilation extends from polymeric scaffolds nurturing tissue regeneration to the intelligent design of polymers for personalized medicine. Through meticulous exploration, the contributors illuminate the transformative impact of polymers across diverse medical domains, from diagnostics to cancer therapy.

In an age where innovation is paramount, the editors have curated a comprehensive ensemble of chapters that not only elucidate existing paradigms but also illuminate future horizons. It is through their dedication and vision that this compendium stands as a beacon of knowledge, guiding researchers, clinicians, and pharmaceutical pioneers toward novel insights and therapeutic breakthroughs.

As we traverse the intricate terrain of polymers in modern medicine, it is my honor to contribute this foreword. May this volume serve as a cornerstone for scientific inquiry, a roadmap for translational research, and, ultimately, a catalyst for improving healthcare outcomes worldwide.

Surendra Ganeshlal Gattani

School of Pharmacy S.R.T.M.University, Nanded-431 606 Maharashtra India

PREFACE

Polymers have emerged as versatile materials with a wide range of applications in modern medicine, significantly impacting various aspects of healthcare. The book series, "Polymers in Modern Medicine," comprises two parts that collectively explore the multifaceted roles of polymers in advancing medical science and improving patient care.

Part 1 of this series provides a comprehensive introduction to the fundamental concepts and applications of polymers in the medical field. It begins with an overview of polymeric biomaterials and extends into the applications of polymer nanotechnology, scaffolds for tissue engineering, and innovative polymer-based drug delivery systems. The volume also discusses the use of smart polymers in medicine, along with advancements in polymeric implants, prosthetics, and coatings in medical devices.

Part 2 explores into more specialized and advanced topics, covering the applications of polymers in personalized medicine, sustainable healthcare, and nanomedicine for cancer therapy. It also explores the use of polymers in diagnostics, the development of polymer-based vaccines, and regenerative medicine approaches. By examining these innovative uses, the second part highlights the cutting-edge research and developments that are shaping the future of polymer applications in medicine.

Together, these two volumes offer a detailed and in-depth exploration of how polymers are revolutionizing the medical field. We hope this book series serves as a valuable resource for researchers, practitioners, students, and industry professionals interested in the dynamic and evolving landscape of polymer applications in healthcare.

We extend our sincere thanks to Bentham Science Publishers for their support and to all the contributors for their hard work and dedication in creating this comprehensive compilation. We believe that these two volumes will provide insightful perspectives on current developments and point towards future directions for leveraging polymers to address unmet medical needs.

Sachin Namdeo Kothawade Department of Pharmaceutics

SCSSS's Sitabai Thite College of Pharmacy Shirur-412210, Dist-Pune, Maharashtra, India

&

Vishal Vijay Pande RSM's N. N. Sattha College of Pharmacy Ahmednagar-414001, Maharashtra, India

List of Contributors

Anil Pethe	Datta Meghe College of Pharmacy, DMIHER (DU), Sawangi Meghe-442001, Wardha, Maharashtra, India
Ashish Y. Pawar	MGVs Pharmacy College, Panchavati, Nashik-422003, Maharashtra, India
Aditi P. Padave	Shri D.D. Vispute College of Pharmacy & Research Center, Panvel-410206, Maharashtra, India
Aarti V. Udmale	Shri D.D. Vispute College of Pharmacy & Research Center, Panvel-410206, Maharashtra, India
Ashish S. Jain	Shri D.D. Vispute College of Pharmacy & Research Center, Panvel-410206, Maharashtra, India
Bhushan R. Rane	Shri D.D. Vispute College of Pharmacy & Research Center, Panvel-410206, Maharashtra, India
Deeliprao Derle	Maratha Vidya Prasarak Samaj's College of Pharmacy, MVP Campus, Gangapur Road, Shivaji Nagar, Nashik-422002, Maharashtra, India
Darshan Telange	Datta Meghe College of Pharmacy, DMIHER (DU), Sawangi Meghe-442001, Wardha, Maharashtra, India
Deepak D. Sonawane	SSS's Divine College of Pharmacy, Satana, Tal-Baglan, Dist-Nashik, Maharashtra, India
Dinesh S. Mutkule	Shri D.D. Vispute College of Pharmacy & Research Center, Panvel-410206, Maharashtra, India
Govind Asane	AETs St. John Institute of Pharmacy and Research, Palghar-401404, Maharashtra, India
Jayprakash Suryawanshi	RSM's N.N. Sattha College of Pharmacy, Ahmednagar-414001, Maharashtra, India
Kartiki Bhandari	GES's Sir Dr. M.S. Gosavi College of Pharmaceutical Education and Research, Nashik-422005, Maharashtra, India
Kunal G. Raut	School of Health Science and Technology, Department of Pharmaceutical Sciences, Dr. Vishwanath Karad MIT World Peace University, Kothrud, Pune-411038, Maharashtra, India
Manjusha Bhange	Datta Meghe College of Pharmacy, DMIHER (DU), Sawangi Meghe-442001, Wardha, Maharashtra, India
Mayur R. Gavit	Shri D.D. Vispute College of Pharmacy & Research Center, Panvel-410206, Maharashtra, India
Nandini R. Mhatre	Shri D.D. Vispute College of Pharmacy & Research Center, Panvel-410206, Maharashtra, India
Nikita P. Mane	Shri D.D. Vispute College of Pharmacy & Research Center, Panvel-410206, Maharashtra, India
Namrata Navale	AETs St. John Institute of Pharmacy and Research, Palghar-401404, Maharashtra, India
Prashant Pingale	GES's Sir Dr. M.S. Gosavi College of Pharmaceutical Education and Research, Nashik-422005, Maharashtra, India

Popat Mohite	AETs St. John Institute of Pharmacy and Research, Palghar, Maharashtra, India
Prashant B. Patil	Department of Pharmaceutics, SCSSS's Sitabai Thite College of Pharmacy, Shirur-412210, Dist-Pune, Maharashtra, India
Puja P. Chaure	Shri D.D. Vispute College of Pharmacy & Research Center, Panvel-410206, Maharashtra, India
Ramesh Bhusal	AETs St. John Institute of Pharmacy and Research, Palghar-401404, Maharashtra, India
Ritika Mishra	AETs St. John Institute of Pharmacy and Research, Palghar-401404, Maharashtra, India
Rashmi Tambare	Shreeyash Institute of Pharmaceutical Education and Research, Aurangabad-431010, Maharashtra, India
Sahebrao Boraste	GES's Sir Dr. M.S. Gosavi College of Pharmaceutical Education and Research, Nashik-422005, Maharashtra, India
Shubham Munde	AETs St. John Institute of Pharmacy and Research, Palghar, Maharashtra, India
Shweta Marade	AETs St. John Institute of Pharmacy and Research, Palghar, Maharashtra, India
Shreya Chauhan	AETs St. John Institute of Pharmacy and Research, Palghar, Maharashtra, India
Sachin Namdeo Kothawade	Department of Pharmaceutics, SCSSS's Sitabai Thite College of Pharmacy, Shirur-412210, Dist-Pune, Maharashtra, India
Shankar M. Dhobale	Vishal Institute of Pharmaceutical Education & Research, Ale-412411, Tal.: Junnar, Dist.: Pune, Maharashtra, India
Sandesh S. Bole	Department of Pharmaceutics, SCSSS's Sitabai Thite College of Pharmacy, Shirur-412210, Dist-Pune, Maharashtra, India
Shubhangi N. Albhar	MGVs Pharmacy College, Panchavati, Nashik-422003, Maharashtra, India
Sanskruti S. Gawade	Shri D.D. Vispute College of Pharmacy & Research Center, Panvel-410206, Maharashtra, India
Sandesh Bole	RSM's N.N. Sattha College of Pharmacy, Ahmednagar-414001, Maharashtra, India
Vrushali Gokhale	AETs St. John Institute of Pharmacy and Research, Palghar, Maharashtra, India
Vaibhav Wagh	RSM's N. N. Sattha College of Pharmacy, Ahmednagar-414001, Maharashtra, India
Vijaykumar S. Wakale	Samarth Institute of Pharmacy, A/P-Belhe. Tal-Junnar, Dist- Pune-412410, Maharashtra, India
Vaibhav L. Patil	Shri D.D. Vispute College of Pharmacy & Research Center, Panvel-410206, Maharashtra, India

iv

CHAPTER 1

Polymers Used in Personalized Medicines

Sahebrao Boraste^{1,*}, Kartiki Bhandari¹, Deeliprao Derle² and Prashant Pingale¹

¹ GES's Sir Dr. M.S. Gosavi College of Pharmaceutical Education and Research, Nashik-422005, Maharashtra, India

² Maratha Vidya Prasarak Samaj's College of Pharmacy, MVP Campus, Gangapur Road, Shivaji Nagar, Nashik-422002, Maharashtra, India

Abstract: Personalized medicine (PM) is revolutionizing healthcare by tailoring treatments to individual patients' unique biological compositions and lifestyles. This approach considers various factors, including genetic data, lifestyle, and environmental influences, to create customized therapeutic strategies. Polymers play a crucial role in PM formulations, allowing for the creation of personalized dosage patterns without adverse effects. Smart polymers, such as thermo-responsive, photo-responsive, selfrepairing, and shape-memory polymers, have garnered attention for their ability to adapt to environmental changes and stimuli. Thermo-responsive polymers like pluronics and poly(N-isopropyl acrylamide) exhibit temperature-dependent behavior, making them suitable for drug delivery and tissue engineering. Photo-responsive polymers offer spatial adaptability, allowing precise control over drug release and tissue engineering processes. Self-repairing hydrogels, with dynamic covalent and noncovalent bonds, can regenerate their structure post-injury, holding promise for various clinical applications. Shape-memory polymers can temporarily adopt multiple forms and return to their original shape upon stimulation, offering versatility in biomedical applications. Common polymers used in PM include polyvinyl alcohol (PVA), polylactic acid (PLA), and polycaprolactone (PCL). The applications of these polymers range from 3-D printing for personalized medical devices to controlled drug delivery systems. Future advancements in polymer science and genomic understanding will further enhance the effectiveness and scope of personalized medicine, leading to improved patient outcomes and reduced treatment side effects.

Keywords: Photo-responsive polymers, Polyvinyl alcohol, Polylactic acid, Polycaprolactone, Personalized medicines, Polymers, Self-repairing polymers, Shape-memory polymers, Smart polymers, Thermo-responsive polymers.

^{*} Corresponding author Sahebrao Boraste: GES's Sir Dr. M.S. Gosavi College of Pharmaceutical Education and Research, Nashik-422005, Maharashtra, India; Email: saheb2410@gmail.com

INTRODUCTION

The goal of personalized medicines (PM) is to provide people with customized clinical therapies and procedures. This method is predicated on the notion that each individual has a unique biological composition, way of living, and surroundings, which have a significant impact on their well-being and reaction to therapy. In order to create a thorough management strategy that is customized for every person, PM considers not just DNA data but additionally other elements like the individual's routine, surroundings, and past health conditions. Because of modern technological advancements and improvements in our knowledge of genomics and the causes of illness, PM has assumed greater importance in the management of ailments. When it comes to treating some malignancies, like pulmonary or breast tumors, PM has demonstrated tremendous efficacy. Through an investigation of DNA abnormalities present in an individual's cancer, medical professionals can pinpoint precise biological targeting and create customized medicines that concentrate on these alterations. Contrary to conventional radiation treatment, this method has shown better results and less negative consequences. Additionally, novel medicines for conditions like Parkinson's or dementia are being developed using it. PM is becoming more and more significant in the management of illnesses; by considering the person's surroundings, routine, and past health events, physicians can create a customized course of action [1, 2].

For instance, based on nutrition, physical activity, and various other behavioral variables, an individual having hypertension may profit from an alternate therapy approach. Physicians can create an increasingly thorough, successful course of action with minimal adverse consequences by accounting for these criteria. PM has significant effects on premature illness recognition as well as mitigation alongside its involvement in medical therapy. Clinicians may recognize people who are in elevated danger for particular illnesses and create specific strategies that prevent the condition from occurring by examining the person's genome and additional indicators of illness. In general, PM is playing an increasingly important part in the management of disorders. This method is being utilized to create novel medicines for numerous illnesses and has so far resulted in a notable advancement in the treatment of several forms of malignancies. Future developments in technological advances and our growing knowledge of genomics and biological pathways will probably make PM increasingly significant [1].

Introduction to Polymers used in Personalized Medicines

PM preparation calls for a sizable quantity of particular, premium polymers that may formulate personalized dose patterns according to the patient's needs without interfering with API or other formulation components or producing adverse

Personalized Medicines

Polymers in Modern Medicine (Part 2) 3

consequences to individuals. Throughout the last decade, the healthcare area has seen a significant development of soft components due to advancements in medical equipment, stem cell treatment, and 3-D printing for personalized medication. One class of soft polymers that adapts to shifts in the surroundings is smart polymeric materials. Heat-sensitive polymer compounds, which are frequently utilized in 3-D printing processes and as cellular transporters, are also a common type. One kind of intelligent polymer compound that may rebuild the framework upon multiple harms is self-repairing polymers, which are frequently needle-injected. Another kind of polymer that can recall its initial form is called shape memory polymer. These intelligent materials can serve as transporters of proteins, drugs, or cells. They can be used in medical personalization, surgical procedures that are less hazardous, and biological printing due to their injectability and shape-retaining properties [3].

In recent years, there has been a lot of attention paid to softer composites that have a tensile strength and elastic modulus comparable to that of biological muscles, particularly those softer substances with specific qualities that scientists have dubbed "smart polymer composites". Researchers and technologists have created adjustable, customized goods using innovative substances that circumvent the restrictions posed by the human being's diverse surroundings since the idea of a one-size-fits-all approach is out of time. Smart components, sometimes referred to as responsive substances, are artificial substances whose attributes may be subtly and precisely changed in response to outside stimuli [4]. The healthcare arena is where polymerized intelligent substances are the most frequently employed because they offer both the adjustable and practical features of artificial polymers [4] and the excellent biological compatibility of organic polymers [5]. Smart substances can be stimulated by a variety of environmental factors, such as climate [6], redox processes [7], moisture [8], electrical or magnetic forces [9], variations in pH [10], and exposure to sunlight [11]. Diverse biological usages, such as biological sensors [12], controlled administration of drugs [13, 14], regenerative medicine [15], localized injection, tumor cell barriers, least intrusive surgical procedures, and three-dimensional bioprinting [16], among others, have made use of such substances with distinct prompting processes. Personalized healthcare product development is made possible by the intelligent polymer components' adjustable characteristics and atmospheric sensitivities. A trio of common polymer intelligent materials, stimulation-responsive, self-repairing, and shape-memory, is mainly highlighted. A few contemporary PM usages, including 3-D printing, stem cell treatment, and transplantation, are also in focus.

The development of innovative surgical instruments for surgeries that are less intrusive has made use of stimuli-responsive polymers. For example, at lower regional pH of an infarcted region, thermo-sensitive and pH-dependent hydrogels

Polymeric Hydrogels in Medicine

Popat Mohite^{1,*}, Shubham Munde¹, Vrushali Gokhale¹, Shweta Marade¹, Shreya Chauhan¹, Vaibhav Wagh² and Jayprakash Suryawanshi²

¹ AETs St. John Institute of Pharmacy and Research, Palghar, Maharashtra, India ² RSM's N.N. Sattha College of Pharmacy, Ahmednagar-414001, Maharashtra, India

Abstract: This chapter of the book provides a detailed analysis of polymeric hydrogels in medicine, exploring their different properties, synthesis techniques, and biomedical applications. Starting with an introduction, it explains the definition and historical evolution of polymeric hydrogels and their importance in advancing biomedicine. The chapter then examines the physical characteristics, chemical structure, and responsive behavior of polymeric hydrogels to provide a foundational understanding. It also covers different synthesis and fabrication techniques, including polymerization approaches and various crosslinking methods, as well as advanced techniques such as microfluidics and 3D printing. The chapter then delves into the biocompatibility and bifunctionality of polymeric hydrogels, including their interactions with biological systems and the incorporation of bioactive agents for specific applications. It discusses their different applications in medicine, from drug delivery systems to wound healing and tissue engineering, with illustrative case studies. The chapter also addresses the challenges and solutions related to biodegradability, immunogenicity, and regulatory considerations, providing a holistic perspective. Finally, it explores future directions and emerging trends, identifying opportunities for cross-disciplinary collaboration and integration with emerging technologies. Its objective is to serve as a valuable resource for researchers, scientists, and professionals, fostering a deeper understanding of polymeric hydrogels and inspiring further advancements in this dynamic field.

Keywords: Applications, Adhesives, Biocompatibility and biofunctionality, Bioactive agents, Biomedical applications, Drug delivery, Hydrogels, Interaction with biological systems, Polymers, Properties, Regenerative medicines, Regenerative medicine, Responsive behaviour, Surgical sealants, Smart biomaterials, Tissue Engineering, Wound healing.

^{*} Corresponding author Popat Mohite: AETs St. John Institute of Pharmacy and Research, Palghar, Maharashtra, India; E-mail: mohitepb@gmail.com

INTRODUCTION

The acronym "polymer" arises from the Greek words 'polys' [meaning a lot] and 'meros' [meaning component or unit]. Polymers, exemplified by substances like proteins and cellulose, constitute the fundamental building blocks of living organisms [1]. A hydrogel is a polymeric network with crosslinks that might keep water in its porous structure. They can be produced in a single step by creating them in the presence of monomers, which are multifunctional cross-linkers, or by integrating molecules of polymer, including reactive groups, which makes it possible to build networks later [2]. Hydrogels tend to be made up of polar or functional groups with particular electrical characteristics that permit them to be hydrophilic, soak water, and swell up specific substances with broadened reactions to stimuli [3]. Although hydrogels do not dissolve in water, they are capable of holding to a minimum of 20% of water and biological fluids and a maximum of 99% when inflated. Hydrogels, which are biocompatible and can be liquid-swollen to 99% of their dry mass with no disappearing, might be offered the gentle rubbery consistency and have a very low interfacial tension with water [or biological fluids] that live tissues also offer [4]. Polymeric hydrogel exhibits viscoelastic characteristics and possesses a network structure resulting from the presence of a cross-linker and a solvent [5]. The field of hydrogel research has been progressively advancing and gaining increased recognition over the years [6]. Wichterle and Lim invented the first synthetic hydrogels in 1954, using pHEMA. After this discovery was made, hydrogels were immediately utilized in the fabrication of contact lenses. Over time, they have been widely used in a variety of sectors, including medication delivery systems, tissue engineering, environmental cleanup, biosensors, and agriculture [7].

The classic 1976 book published by Andrade2 remains a reputable source of much knowledge in the field of hydrogel biomedical applications. With increasingly stringent biomaterial requirements, the design and production of innovative materials with smart functionalities are critical. The creation of composite materials that may overcome individual weaknesses while also providing synergistic benefits provides an effective way to increase biomaterial performance and broaden application ranges. Electrospun fibers and hydrogels have been widely used in various biological and biomedical disciplines due to their unique architectures and qualities. Based on this, increasing attention has been dedicated to composites of electrospun fibers and hydrogels as biomaterials, with the goal of bringing their unique excellence into full play while also correcting their inherent flaws [8].

In the last 25 years, significant scientific contributions to the fabrication, structure, characteristics, and biological uses of hydrogels have arisen. Although

28 Polymers in Modern Medicine (Part 2)

various research organizations have contributed to this subject, a dozen top groups deserve special recognition. The Czechoslovakian group at the Academy of Sciences [O. Wichterle, J. Janacek, B. Sedlacek, and J. Kopecek] did a lot of early work on the structural, physical, and mechanical characteristics of hydrogels, particularly PHEMA hydrogels.

The diverse designs and adaptability of hydrogels make them applicable in various settings. Their flexibility, facilitated by high water content, allows for extensive use in both industrial and biological contexts. Fig. (1) illustrates several biomedical applications like biosensing, drug delivery, hygiene products, cancer treatment, bone regeneration, antimicrobial applications, and wound healing, where hydrogels find practical utility [9].

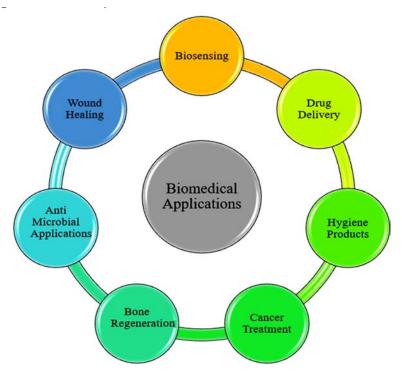


Fig. (1). Biomedical applications.

Until now, there has been a considerable amount of research dedicated to utilizing hydrogels as a primary element in sensor systems. This is logical, given the substantial rise in demand for versatile chemical and biochemical sensors [10].

Hydrogels, the extensively employed crosslinked polymeric network, serve as analogs to the extracellular matrix [ECM] owing to their high hydration capacity.

Biopolymers in Medicine

Sachin Namdeo Kothawade^{1,*}, Shankar M. Dhobale², Kunal G. Raut³, Sandesh S. Bole¹, Prashant B. Patil¹ and Vijaykumar S. Wakale⁴

¹ Department of Pharmaceutics, SCSSS's Sitabai Thite College of Pharmacy, Shirur-412210, Dist-Pune, Maharashtra, India

² Vishal Institute of Pharmaceutical Education & Research, Ale-412411, Tal.: Junnar, Dist.: Pune, Maharashtra, India

³ School of Health Science and Technology, Department of Pharmaceutical Sciences, Dr. Vishwanath Karad MIT World Peace University, Kothrud, Pune-411038, Maharashtra, India ⁴ Samarth Institute of Pharmacy, A/P-Belhe. Tal-Junnar, Dist- Pune-412410, Maharashtra, India

Abstract: The chapter explores the extensive use of biopolymers in medical applications, tracing back to ancient times when natural polymers provided bioactive matrices for designing biocompatible materials. Polysaccharides, notably oligosaccharides and polysaccharides, derived from living organisms, exhibit diverse physiological functions and are increasingly investigated for potential biomedical applications. The chapter delves into various classifications of polysaccharides based on their sources and molecular structures, highlighting their non-toxic and abundant nature. Biopolymers, derived from renewable natural sources, offer a sustainable alternative to petroleum-based polymers, with applications ranging from drug delivery systems to wound care and tissue engineering. Examples include starch, cellulose, chitin, proteins, and peptides, each offering unique properties conducive to specific medical applications. The focus shifts to specific biopolymers like sodium alginate, chitosan, collagen, and gelatin, detailing their chemical properties, biological functions, and commercial applications in wound care, drug delivery, tissue engineering, and more. Furthermore, the chapter discusses the extraction methods, properties, and applications of hydrocolloids, catgut, branan ferulate, superabsorbent fibers, and resorbable fibers in medical contexts. It highlights the continuous research efforts aimed at harnessing the unique properties of biopolymers for innovative medical solutions, promising a sustainable and effective approach to healthcare management.

Keywords: Biopolymers, Bioactive matrix, Branan ferulate, Biocompatible materials, Chitin/chitosan, Collagen, Healing products, Hydrocolloids, Intelligent materials, Natural polymers, Oligosaccharides, Polysaccharides, Superabsorbent fibers, Surgical implant devices, Wound closure.

^{*} Corresponding author Sachin Namdeo Kothawade: Department of Pharmaceutics, SCSSS's Sitabai Thite College of Pharmacy, Shirur-412210, Dist-Pune, Maharashtra, India; E-mail: sachin.kothawade23@gmail.com

INTRODUCTION

The use of natural polymers in medical applications dates back to ancient times. These polymers provided biologically active matrices for the creation of biocompatible and smart materials [1, 2]. Biopolymers such as oligosaccharides and polysaccharides are frequently present in living organisms, showcasing their physiological functions through distinctive conformations. Recent research has focused on uncovering the biological functions of polysaccharides for potential biomedical applications, whether they are natural polymers or composed of a single type of monosaccharide. These compounds can have a linear or branched structure and can be modified with various organic groups like methyl and acetyl groups [3 - 7]. Various polysaccharides extracted from plants and utilized in traditional medicine have been found to contain active sites that interact with complementary systems. New polymers are constantly being developed, along with traditional materials that have been enhanced using cutting-edge technologies and innovative methods. Research in this field is highly focused on technical advancements, technological innovations, functionality, and efficiency. Polymers and dressings have key qualities as healthcare products. They can be bacteriostatic, anti-viral, fungistatic, non-toxic, extremely absorbent, non-allergic, breathable, hemostatic, biocompatible, and manipulatable to incorporate medications; they can also provide reasonable mechanical properties. These products have many benefits over conventional materials when modified or blended with alginate, chitin/chitosan, collagen, and branan ferulate polymers [8, 9]. Exploring wound care involves using materials such as hydrogels, matrix, films, hydrocolloids, foams, and specialized additives with unique functions. These advancements in healthcare can help absorb odors, offer strong antibacterial properties, alleviate pain, and reduce irritation. Due to their distinct characteristics, such as a large surface area compared to volume ratio, film thickness, nano-scale fiber diameter, porosity, and lightweight, nanofibers find applications in the healthcare sector [10 - 17].

CLASSIFICATIONS OF POLYSACCHARIDES

There is a wide range of polysaccharides sourced from various natural origins, typically categorized as shown in Table 1:

Structural Polysaccharides	Storage Polysaccharides	Marine Polysaccharides	Bacterial and Synthetic Polysaccharides
Pectin	Starch	Alginates	Bacterial alginate
Cellulose and hemicellulose		Brawn seaweed	Dextrans

Table 1. Polysaccharides.

76 Polymers in Modern Medicine (Part 2)

Kothawade et al.

Structural Polysaccharides	Storage Polysaccharides	Marine Polysaccharides	Bacterial and Synthetic Polysaccharides	
V laur	Glycogen	Carrageenans	Cyclodextrins	
Xylans		Red seaweed	Caller	
Xylanases		Agar and agarose	Gellan	
Glycosaminoglycans	Fructans	Chitosan	Scleroglucan	
		Chitin	schizophyllan	

Polysaccharides may likewise be categorized by their molecular structure, such as polysaccharides with: -

- Red-shaped molecules, such as alginates, xanthans, and chitosans.
- Structures resembling linear random coils such as dextrans and pullulans
- Alginates, pectins, carrageenans, xanthans, and hyaluronic acid are examples of polyanions.
- Dextran derivatives, as well as chitosans, are polycations
- Guar, pullulan, and dextran are natural structures

Almost all of these compounds are safe and can be easily obtained in large quantities at a low price [18 - 21].

BIOPOLYMERS

Biopolymers are polymers made from sustainable natural sources, typically biodegradable and non-toxic during production. These substances can be created by living organisms such as microorganisms, plants, and animals, or they can be chemically made from biological sources like sugars, starch, natural fats, or oils. Biopolymers serve as a sustainable option for polymers made from petroleum (traditional plastics). Certain polymers break down within a few weeks, whereas others require several months. Biodegradability, along with other plastic characteristics, is closely linked to the polymer structure. Through modifying the structure, these characteristics can be adjusted [22 - 25].

There are four primary categories of biopolymers based on:

- 1. Starch
- 2. Sweetener

Polymer-Based Nanomedicine for Cancer Therapy

Darshan Telange^{1,*}, Manjusha Bhange¹ and Anil Pethe¹

¹ Datta Meghe College of Pharmacy, DMIHER (DU), Sawangi Meghe-442001, Wardha, Maharashtra, India

Abstract: Specially polymer-based nanomedicine is of great interest for cancer, and has a tremendous level in nanotechnology, and nanomolecular intervention, and ahigher specialty for treating cancer or repairing cellular content. In recent years, polymer-based nanomedicine, a field that includes the use of polymeric substances-nucleic acid complexes (polyplexes), polymer-drug encapsulation, and polymer nanoparticle bearing those drugs having hydrophobic properties, has received higher proliferation for providing highly effective treatment for cancer. Nano molecules show excellent biocompatibility, and biodegradability and can circulate in the plasma for sustainability to reach the specific targeted site. In addition, also the receptor overexpressed in the tumour cells can have an effect on tumour. This chapter highlights the history and current situation of the type of cancer in the world as per "GLOBOCON DATABASE". Also, the focus will be on nano-medicine, which is formulated in various forms (nanomicells, dendrimers, gold nanoparticles, nanogels) and on rational approaches for the future development of polymer-based nanomedicine.

Keywords: Cancer therapy, Drug delivery, Imaging, Nanomedicine, Photodynamic therapy, Polymer ligand carrier, Polymer nanoparticles, Polymeric nanocarriers, Polymer conjugates, Stimuli-responsive polymers, Targeted therapy, Tumor targeting, Therapeutic nanoparticles.

INTRODUCTION

In the relentless battle against cancer, researchers continually seek innovative approaches to improve treatment efficacy while minimizing side effects. One such promising avenue is the utilization of nanoparticles in cancer therapy. Nanoparticles, due to their unique physicochemical properties, offer unprecedented opportunities to revolutionize the delivery of therapeutic agents to tumor sites. This introduction provides an overview of the application of nanoparticles in cancer therapy, highlighting their significance, advantages, and potential impact on patient outcomes.

^{*} **Corresponding author Darshan Telange:** Datta Meghe College of Pharmacy, DMIHER (DU), Sawangi Meghe-442001, Wardha, Maharashtra, India; E-mail: darshan.pharmacy@dmiher.edu.in

Polymer-Based Nanomedicine

Cancer remains one of the most formidable challenges to human health worldwide, with conventional treatment modalities often limited by systemic toxicity, drug resistance, and inadequate targeting of malignant cells. Nanoparticles, defined as particles with dimensions ranging from 1 to 100 nanometers, represent a versatile platform for addressing these limitations. Their small size confers numerous advantageous properties, including a large surface area-to-volume ratio, tunable surface chemistry, and the ability to encapsulate or conjugate various therapeutic payloads.

The hallmark of nanoparticle-based cancer therapy lies in its capacity for targeted drug delivery. Nanoparticles can be engineered to selectively accumulate in tumor tissues through passive or active targeting mechanisms [1]. The enhanced permeability and retention (EPR) effect, inherent to many solid tumors, facilitates the preferential accumulation of nanoparticles within the tumor microenvironment, sparing healthy tissues.

Moreover, nanoparticles can be functionalized with targeting ligands, such as antibodies or peptides, enabling specific recognition and binding to cancer cell surface receptors, further enhancing their tumor-homing capabilities. Once localized within tumors, nanoparticles offer several distinct advantages over traditional chemotherapy [2]. Their multifunctional nature allows for the codelivery of multiple therapeutic agents, including chemotherapeutic drugs, nucleic acids, or imaging agents, in a controlled manner. This synergistic combination therapy can overcome drug resistance, enhance treatment efficacy, and minimize the emergence of secondary malignancies. Additionally, nanoparticles can modulate the pharmacokinetics and biodistribution of encapsulated drugs, prolonging circulation time, and optimizing drug release kinetics [3].

The nanoparticle-based cancer therapy holds tremendous promise for personalized medicine. By tailoring nanoparticle properties to individual patient characteristics, such as tumor type, genetic profile, and disease stage, clinicians can optimize treatment regimens for improved outcomes. Furthermore, the integration of nanotechnology with emerging therapeutic modalities, such as immunotherapy and gene therapy, offers novel avenues for combating cancer with unprecedented precision and efficacy [4].

ADVANTAGES OF NANOPARTICLE USAGE IN CHEMOTHERAPY

Targeted Drug Delivery

Nanoparticles can be engineered to target specific cells or tissues, including cancer cells, through passive or active targeting mechanisms. This targeted deli-

98 Polymers in Modern Medicine (Part 2)

Telange et al.

very reduces off-target effects and enhances the concentration of the drug at the tumor site, increasing therapeutic efficacy while minimizing systemic toxicity.

Improved Pharmacokinetics

Nanoparticles can modify the pharmacokinetic profile of drugs by altering their distribution, metabolism, and elimination. This can result in prolonged circulation times, enhanced bioavailability, and controlled release kinetics, leading to improved drug efficacy and reduced dosing frequency [5].

Enhanced Cellular Uptake

Nanoparticles can facilitate cellular uptake through various mechanisms, including endocytosis and receptor-mediated internalization. This increased cellular uptake improves drug delivery to target cells, overcoming drug resistance mechanisms, and enhancing therapeutic outcomes.

Multifunctionality

Nanoparticles can be functionalized with multiple components, including drugs, targeting ligands, imaging agents, and therapeutic payloads. This multifunctional design enables synergistic therapeutic effects, simultaneous imaging and treatment, and personalized medicine approaches.

Overcoming Biological Barriers

Nanoparticles can overcome biological barriers, such as the blood-brain barrier or the stromal barrier in solid tumors, which limit the delivery of conventional chemotherapeutic agents. This allows for the treatment of previously inaccessible diseases and improves drug penetration into tumor tissues.

Reduced Systemic Toxicity

Targeted delivery of chemotherapeutic agents using nanoparticles reduces exposure to healthy tissues, minimizing systemic toxicity and adverse side effects commonly associated with conventional chemotherapy. This selective targeting enhances the therapeutic index of drugs, allowing for higher doses to be administered safely.

Combination Therapy

Nanoparticles enable the co-delivery of multiple therapeutic agents, such as chemotherapy drugs, immunomodulators, or gene therapy vectors, in a controlled

Polymers in Diagnostics

Ashish Y. Pawar^{1,*}, Shubhangi N. Albhar¹, Sachin Namdeo Kothawade² and Deepak D. Sonawane³

¹ MGVs Pharmacy College, Panchavati, Nashik-422003, Maharashtra, India

² Department of Pharmaceutics, SCSSS's Sitabai Thite College of Pharmacy, Shirur-412210, Dist-Pune, Maharashtra, India

³ SSS's Divine College of Pharmacy, Satana, Tal-Baglan, Dist-Nashik, Maharashtra, India

Abstract: Historically, laboratory verification has been the mainstay of medical diagnostics. This has resulted in arduous processes, expensive equipment, and a shortage of medically educated workers, not to mention delayed findings. However, the growing need for point-of-care medical testing devices coupled with the ongoing medical and digital technology integration has made it easier to create devices that have high selectivity, specificity, and quick reaction times. Every pandemic has brought attention to the development of these devices on a global scale, underscoring the pressing need to improve accurate, timely, and dependable medical diagnosis and treatment. The need for innovative methods of identifying biological entities with quick and precise diagnostic capacities is now growing steadily. Polymeric materials have been used as a key component in the development of several analytical procedures. Due to their easily adjustable characteristics, including their viscoelasticity, chemical and mechanical resistance, and adaptability, polymers have a wide range of uses. The fundamental benefit of employing polymers is their adaptability when mixed with other materials to produce products with a variety of physicochemical properties. Therefore, the physicochemical qualities of the polymer, which include its physical and chemical characteristics, may be changed to suit the needs of a particular application, which are Polymer-Based Sensors, Lab-on-a-Chip Technologies, and Polymer-Mediated Imaging Agents. Special focus is on polymers that form multifunctional, stable systems with nanostructured architecture. This chapter provides an overview of the sorts of polymeric materials and how they function in the operation of important diagnostic equipment.

Keywords: Diagnostic capacities, High selectivity, Lab-on-a-Chip technologies, Nanostructured architecture, Polymer-mediated imaging agents, Point-of-Care, Polymers, Specificity.

^{*} Corresponding author Ashish Y. Pawar: MGVs Pharmacy College, Panchavati, Nashik-422003, Maharashtra, India; E-mail: pawarashish23@gmail.com

INTRODUCTION

The need for innovative methods of identifying biological entities with quick and precise diagnostic capacities is now growing steadily. Polymeric materials have been used as a key component in the development of several analytical procedures. Due to their easily adjustable characteristics, including their viscoelasticity, chemical and mechanical resistance, and adaptability, polymers have a wide range of uses. To manufacture polymeric materials with various topologies and morphologies, such as linear, branching, and crosslinked, films, micro- and nanoparticles, fibres, elastomers, and thermoplastics, a broad range of synthetic techniques are also accessible [1].

Numerous commercial products and equipment, including packaging, medical components, domestic goods, and industrial parts, among others, have polymers as a significant component. The fundamental benefit of employing polymers is their adaptability when mixed with other materials to produce products with a variety of physicochemical properties. Therefore, the physicochemical qualities of the polymer, which include its physical and chemical characteristics, may be changed to suit the needs of a particular application [2], which are;

- **1.** Polymer-Based Sensors
- 2. Lab-on-a-Chip Technologies
- **3.** Polymer-Mediated Imaging Agents

POLYMER-BASED SENSORS

Polymers are a vast variety of newly created materials that are beneficial in many applications due to their various physico-chemical characteristics Polymers have gained interest because they may alter their properties, either permanently or reversibly, in response to external stimuli [3]. These include the presence of certain ions or bioactive substances, changes in pH or temperature, light radiation, electric or magnetic fields, and more. Solids, liquids, gels, nanoparticles, and films can all be forms of polymers. These materials can be modified or synthesised appropriately to adapt them to specific tasks in order to create sensor devices (Since the word "device" alludes to a piece of equipment or a mechanism made to carry out a certain task or function, it was used as a "synonym" for "solid-phase chemical sensor) as shown in Fig. (1) [4 - 6].

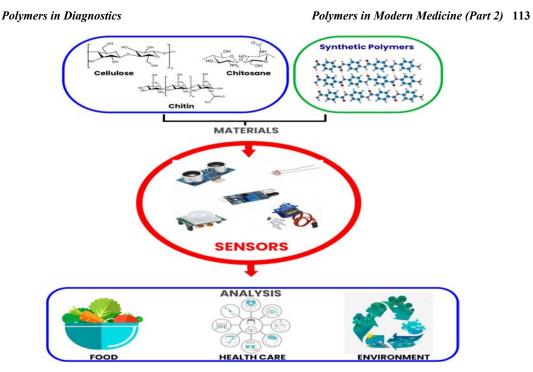


Fig. (1). Polymer-based sensors.

Several works on chemical sensors have been mentioned in recent literature.

Recent instances of polymer-based sensors were reported in relation to environmental monitoring, food safety, and human health monitoring.

Traditional analytical techniques typically needed complex equipment, experienced staff, and protocols that were not designed for widespread use by the general public or in places with limited resources. Therefore, it is crucial to provide inexpensive, user-friendly, and highly sensitive sensors.

The most promising technologies are those based on polymers for creating sensors and biosensors with greater performance. Molecular imprinted polymers (MIP), conducting polymers and their composites, hydrogels, and other polymeric materials are employed in sensor devices. These types of sensors frequently use polymer-based materials that enhance target molecule recognition, act as supports for functionalities immobilisation (such as dyes, fluorophores, and metal nanoparticles), and enable the detection of the target analytes by altering their physical or chemical properties. Another advantage is the possibility to modify chemical properties of polymer-based sensors to improve their reactive nature, biocompatibility, versatility, and durability against degradation [7].

Polymer-Based Vaccines

Bhushan R. Rane^{1,*}, Vaibhav L. Patil¹, Nandini R. Mhatre¹, Aditi P. Padave¹, Nikita P. Mane¹, Mayur R. Gavit¹, Dinesh S. Mutkule¹, Sanskruti S. Gawade¹, Aarti V. Udmale¹, Puja P. Chaure¹ and Ashish S. Jain¹

¹ Shri D.D. Vispute College of Pharmacy & Research Center, Panvel-410206, Maharashtra, India

Abstract: Vaccination remains the most effective and cost-efficient health intervention for preventing the spread of infectious diseases. However, new-generation vaccines are necessary, as a significant portion of chronic illnesses and infectious diseases remain untreatable with existing immunization programs. Polymer-based particles have recently been employed as vaccine adjuvants due to their ability to prevent antigen degradation and clearance, along with their enhanced uptake by antigen-presenting cells (APCs). Polymeric nanoparticles are readily internalized by APCs, making them valuable in vaccine delivery and demonstrating promising adjuvant effects. Polymerbased systems offer several advantages, including the ability to incorporate various immunomodulators and/or antigens, mimic infections through diverse mechanisms, and act as a depot, thereby prolonging immune responses. This chapter explores the use of polymeric materials as excipients in vaccine formulations and delivery systems in the pharmaceutical and vaccine industries, along with their potential future applications. As our understanding of polymer-based nanomaterials continues to advance, incorporating additional features such as targeted delivery, sustained release, and alternative administration routes becomes increasingly feasible. The integration of polymers into vaccine formulations can significantly enhance global efforts in disease prevention and public health, paving the way for next-generation vaccines.

Keywords: Adjuvant, Immunomodulators, Nanovaccine, Polymer, Vaccine.

INTRODUCTION

Researchers have been exploring various strategies to protect people from fatal diseases for decades. Immunization remains the most effective and affordable method for preventing bacterial and viral infections that cause high morbidity and mortality rates [1, 2].

^{*} **Corresponding author Bhushan R. Rane:** Shri D.D. Vispute College of Pharmacy & Research Center, Panvel-410206, Maharashtra, India; E-mail: rane7dec@gmail.com

136 Polymers in Modern Medicine (Part 2)

Every year, millions of people are protected through vaccination, a remarkable achievement that stands as a major success in global health. Vaccines reduce the likelihood of developing infections by strengthening the body's defense mechanisms. Upon receiving a vaccine, the immune system responds to build protection [3]. During the COVID-19 pandemic, India's vaccines, Covishield and Covaxin, were administered in various countries to save lives.

However, there are still numerous infectious diseases and chronic conditions, such as Respiratory Syncytial Virus (RSV), cytomegalovirus (CMV), malaria, healthcare-associated infections (HAIs), tuberculosis, and HIV, that cannot be fully prevented by current vaccines. Therefore, the development of new vaccines for these diseases remains essential [4].

New approaches, such as polymer-based delivery systems, non-viral vector strategies, and innovative vaccines, may contribute to the development of successful therapeutic vaccines targeting communicable diseases, chronic diseases, and malignancies. Additionally, these technologies may facilitate the creation of vaccines tailored for challenging target populations, including teenagers, adults, and individuals with compromised immunity [5, 6].

Recent vaccine formulations have transitioned from using inactivated viral particles, whole bacteria, or their lysates to highly purified recombinant protein antigens. Purified antigens have lower immunogenicity compared to live or attenuated vaccines despite offering improved safety and precise immune system targeting specific epitopes. Consequently, adjuvants—substances that enhance immune responses—play a crucial role in the development of modern vaccines [7 - 9].

More specifically, polymer-based particles can enhance antigen uptake by professional antigen-presenting cells (APCs) while limiting antigen degradation and clearance, making them useful as adjuvants and vaccine platforms. Polymeric nanoparticles have been employed in vaccine delivery because they are readily absorbed by APCs and have shown significant adjuvant effects. In other words, polymer-based systems offer numerous advantages, including versatility and flexibility in design, the ability to incorporate various immunomodulators and antigens, depot formation for sustained antigen release, and the capacity to mimic infection pathways. This ultimately leads to prolonged immune responses and the development of adaptive immunity [10 - 14].

History

The concept of immunization is not new. In the 17th century, Buddhist monks in China practiced a form of immunization by drinking snake venom to develop

immunity against snake bites [15]. In the 18th century, Edward Jenner coined the term "vaccine", derived from the Latin word vacca, meaning "cow". In 1796, Jenner vaccinated an eight-year-old child using material from cowpox sores, which ultimately provided immunity against smallpox [16 - 18].

Eighty years later, Louis Pasteur developed a live attenuated vaccine for treating rabies in humans. In the 20th century, the development of toxoids marked a significant advancement, coinciding with the evolution of germ theory and the discovery of numerous microbes in the 19th century [19]. This progress led to the development of tetanus and diphtheria vaccines. In the 1930s, chick embryo membranes were used to cultivate viruses, resulting in the development of vaccines for yellow fever and influenza. The creation of vaccines for polio, varicella, mumps, rubella, and measles during this period has often been referred to as the "golden age" of vaccine development [20 - 26].

History offers invaluable lessons in addressing infectious diseases. As the saying goes, "No one is safe until everyone is safe." Our current global efforts to combat COVID-19 and other potential pandemics underscore the necessity of close international collaboration [27, 28].

The use of polymers in vaccination dates back to the idea of adjuvants—substances that enhance the immune system's response to a vaccine. Research into adjuvants, including aluminum salts, began in the early to mid-1900s, with the primary goal of prolonging immune system exposure to antigens and thereby increasing vaccine effectiveness [29 - 31].

Aluminum hydroxide was first used as a vaccine adjuvant in the 1920s and is still commonly included in vaccine formulations today. Aluminum salts were among the first materials used to enhance immune responses, and their adjuvant properties are well-established [32].

In the latter part of the 20th century, researchers began investigating the use of polymers as adjuvants. These adjuvants offered several advantages, including improved stability, targeted immune responses, and controlled antigen release. Biocompatible and biodegradable polymers like PLGA (poly(lactic-co-glycolic acid)) became increasingly popular [33, 34].

The rise of nanotechnology in the late 20th century enabled the creation of polymeric nanoparticles with precise and customizable properties. These nanoparticles provided vaccine formulations with a highly specific, adaptable platform. The size, surface charge, and functionalization of polymeric nanoparticles made them well-suited for targeted vaccine delivery.

Polymeric Approaches in Regenerative Medicines

Popat Mohite^{1,*}, Govind Asane¹, Ramesh Bhusal¹, Ritika Mishra¹, Namrata Navale¹, Sandesh Bole² and Rashmi Tambare³

¹ AETs St. John Institute of Pharmacy and Research, Palghar-401404, Maharashtra, India

² RSM's N.N. Sattha College of Pharmacy, Ahmednagar-414001, Maharashtra, India

³ Shreeyash Institute of Pharmaceutical Education and Research, Aurangabad-431010, Maharashtra, India

Abstract: This book chapter provides an in-depth examination of the diverse applications of polymeric approaches in regenerative medicine. It starts with an introduction and highlights the significance of polymeric materials. The section also delves into various biomaterials, including natural polymers like collagen and synthetic counterparts like poly(lactic-co-glycolic acid). The scaffold design and fabrication techniques, such as 3D printing and electrospinning, are explored for their role in creating biomimetic structures. It also highlights polymeric nanomaterials for controlled drug delivery, emphasizing nanoparticles, micelles, and theranostic approaches. Polymeric hydrogels play a central role in tissue regeneration, with specific applications in cardiac, bone, and neural tissue engineering. The chapter also addresses immunomodulation, host responses, and biocompatibility to ensure the practicality of polymeric regenerative strategies. The evaluation of the current clinical status, regulatory considerations, and challenges associated with polymeric regenerative approaches is undertaken. The chapter concludes with insights into future perspectives, innovations, and collaborative research opportunities in the dynamic field of polymeric approaches in regenerative medicine. This chapter provides a comprehensive resource for researchers and scientists seeking a deeper understanding of the role of polymeric materials in advancing regenerative therapies.

Keywords: Biomaterials, Drug delivery, Electrospinning technique, Hydrogels, Hybrid polymers, Injectable hydrogels, Modulate immune responses, Microfluidics, Nanofiber-based scaffolds, Nanoparticles, Nanogels, Polymeric micelles, Polymers, Responsive hydrogels, Regenerative medicines, Smart polymers, Scaffolds, Tissue engineering, Wound healing, 3D Printing.

^{*} Corresponding author Popat Mohite: AETs St. John Institute of Pharmacy and Research, Palghar-401404, Maharashtra, India; E-mail: mohitepb@gmail.com

INTRODUCTION

Considerable investigation into the application of polymers as biomaterials has been conducted throughout the preceding half-century. The diverse chemical configurations and functional groups of these polymers play a crucial role in influencing their morphology and other characteristics, offering precise control over the construction of molecular architectures tailored to specific biomedical applications. Notably, biocompatible polymers have found successful applications in medication delivery systems and prosthetic organs. However, the effectiveness of these applications hinges on the developed molecular architecture's capacity for self-organization and biocompatibility [1].

Biomaterials are referred to as "any synthetic or natural synthetic or natural substance or combination of substances that can be used at any time to partially or completely supplement or replace the function of any organ, tissue or body, to maintain or improve the quality of life of an individual" (American National Institute for Health, standard definition, NIH) [10]. Since it is commonly recognized that extracellular matrix (ECM) allows cells to improve viability or function, biomaterials containing ECM components, in particular, may be helpful in boosting cell act [2].

In this study, the phrases "regenerative medicine" and "tissue engineering", which are frequently used interchangeably by scientists and physicians, are used interchangeably. The potential for regenerating and replacing damaged organs and tissues serves as the foundation for the promise of regenerative medicine. The field of regenerative medicine has shown promising results in the replacement and regeneration of many tissues and organs, such as the skin, liver, heart, and kidney. It also holds promise for the correction of some congenital defects [3].

In situ ations when the endogenous cells are inadequate or malfunctioning, cell management techniques can aid in the replacement of lost cells in regenerative medicine (*e.g.*, regeneration of nerve tissue). In an attempt to establish a 3D environment that affects the phenotype, architecture, migration, and survival of native cells, as well as cells that have previously been cultivated in the implant, TE blends methods for cell replacement with components of biomaterial scaffolds. Apart from acting as a vehicle for medication delivery, biomaterials can also supply structures for host cell invasion, differentiation, and organization (*e.g.*, controlled release of nanomedicines) [4].

The National Institute for Biomedical Imaging and Bioengineering defines TE as "assembling cells, scaffolds, and physiologically active substances to create functional tissues". Assembling functional constructions that repair, preserve, or enhance damaged tissues or whole organs is the goal of tissue engineering [5].

Tissue engineering (TE) integrates bioscaffold methods with biological signals to repair, retain, or improve the structure and function of damaged organs or tissues. By mimicking the structure, content, and characteristics of the extracellular matrix (ECM) *in vivo*, bioscaffolds give cells a niche and expose them to a variety of biological and physicochemical signals. To provide tissues and organs with structural integrity and mechanical support, ECM functions as a biomass network [6].

Significance of Polymeric Materials in Tissue Engineering and Regeneration

To communicate with a biological system, natural, synthetic, or composite polymer structures are known as biomaterials and are produced in accordance with specific guidelines. The biomaterial's vital function is to replicate the extracellular matrix, which cells attach to and orient to form tissue. Collagen, integrated glycosaminoglycans, and elastic fibers make up the majority of the tissue [7].

The utilization of polymers in biomaterial preparation encompasses two primary categories: natural and synthetic polymers. Collagen, a naturally occurring polymer found in human skin, has demonstrated enormous potential in the field of skin regeneration. When administered to severe burn sufferers, a combination of bovine collagen and human autologous keratinocytes and fibroblasts has demonstrated positive outcomes. For the goal of skin regeneration, collagen is also utilized in the form of bilayered synthetic skin [8].

Because natural polymers are less immunogenic and more biocompatible, they have gained popularity. Moreover, natural polysaccharides like alginate, chitosan, chitin, and various gums have been extensively investigated for their potential as biomaterials. However, despite their advantages, natural polymers possess limitations that impact their application as biomaterials. One significant drawback is their propensity for rapid degradation [9].

Synthetic polymers have an advantage over natural polymers in that they may be functionally modified to accommodate the intended biomaterial purpose without compromising the material's essential properties. The most researched synthetic polymers are poly (glycolic acid) (PGA), poly (lactic-co-glycolic acid) (PLGA), poly (ethylene glycol) (PEG), poly (lactic acid/L-lactic acid) (PLA/PLLA), and polyetheretherketone (PEEK) [10].

When implanted *in vivo*, they show regulated disintegration into non-toxic byproducts, allowing for a customized degradation rate. The ability to modify their fundamental building blocks allows the creation of materials with diverse properties, such as uniformity and freedom from immunogenicity. One of their

SUBJECT INDEX

A

Acid(s) 1, 11, 12, 13, 14, 38, 39, 47, 78, 79, 80, 88, 89, 90, 118, 119, 140, 141, 185, 188, 190, 203 alginic 47, 78, 79 carboxylic 141 folic 190 glucuronic 39, 88 lactic 12, 89, 141 methacrylic 38 polyacrylic 119, 203 polyglutamic 140 polyglycolic 89, 118, 203 polylactic (PLA) 1, 11, 12, 13, 14, 89, 90, 141, 185, 188, 203 polylactic 1, 12, 89, 118, 141, 185, 203 polymeric 78 Agents 46, 83, 98, 102, 128, 129, 185, 189, 207, 208 antimicrobial 185 chemotherapeutic 98 enzymatic debriding 83 fluorescent 129 supplying immunomodulatory 207 Agglutination, erythrocyte 81 Alginate, calcium 78, 79, 80 Antibodies 97, 118, 121, 126, 141, 144, 145, 188, 207 immobilised 126 monoclonal 207 Antigen(s) 135, 136, 140, 141, 146, 147, 151, 153, 156, 207, 208 degradation 135, 156 -incorporated nanoparticles 151 -presenting cells (APCs) 135, 136, 140, 141, 146, 147, 151, 153, 156, 207, 208 transmit tumor 207 Antigenic peptide 151 Antimicrobial properties 59, 80 API 4, 6, 15 delivery systems 15

transportation 6 transporters 4 Artificial 53, 83, 87 cross-linked polymersare 53 joints 87 skin 83, 87 Autoimmune diseases 152 Autoimmunity 148 Automated systems 121

B

Bacterial lipoproteins 145 Bioprinting 3, 5, 8, 14, 15, 16, 41, 183, 201, 211, 212, 213, 214 of complicated organs 213 process 183 technique 16 technology 41, 213 three-dimensional 3 Blood 62, 185 coagulation 185 triglycerides 62 Bone 28, 182, 200, 203, 204 regeneration 28, 200, 203, 204 restoration 182 Bovine serum albumin (BSA) 117, 152 iminocarbonate-encapsulated 152 Branan ferulate polymers 75

С

Cancer 102, 104, 108, 140, 147, 190, 208 breast 108 colon 140 imaging 102 immunotherapy 104, 147, 208 lung 108 ovarian 190 prostate 108 Cancer therapy 97, 103, 105 nanoparticle-based 97

226 Polymers in Modern Medicine (Part 2)

transform 103, 105 Carcinogenicity 209 Cardiac tissue engineering 202 Cardiomyocytes 42 Cardiovascular treatments 4 Cell management techniques 170 Cerebral tissue 8 Chelates, small molecule 129 Chemical(s) 37, 44, 82, 87, 172, 189 connections 37 proton-generating dissociable 189 resistance 172 stripping processes 87 structure of chitosan and chitin 82 toxic 44 Chitosan 81, 138 microspheres 81 nanoparticles 138 Cholera toxin 145 Chronic 125 kidney disease (CKD) 125 respiratory diseases (CRD) 125 Collagenase, bacterial 83 Computed tomography (CT) 103, 129, 130, 145.183 COP method 60 Copolymer ratio 173 COVID-19 136, 137, 147 combat 137 pandemic 136 CRISPR 124 /Cas technology 124 /Cas13a-based amplification technique 124 Critical micelle concentration (CMC) 6, 114, 191 Cross 37, 40, 57 -linked hydrogels 37 -linking process 37, 40, 57 Cross-linking 32, 37, 39, 40, 43, 57, 89, 130, 192 chemical 37, 39 enzymatic 37 thermal 130 Cytomegalovirus 136 Cytotoxicity tests 139

D

Damage 139, 203 cardiac 203

spinal cord 139 Degradation, microbial 114 Delivery systems 47, 48, 135, 136, 138, 144, 145, 147, 150, 156, 190 polymer-based 136 targeted medication 190 transmucosal drug 138 Dendritic cells (DCs) 153, 207 Diabetic ulcers 59, 60 Dialysis treatments 4 Diseases 125, 128, 136, 142, 143, 144, 146, 204 chronic kidney 125 chronic respiratory 125 gastrointestinal 146 meningococcal 144 targeting communicable 136 Disorders 2, 17, 49, 103, 106, 107, 126, 152, 207 autoimmune 152, 207 medical 49, 126 neurological 103 DNA 2, 34, 57, 77, 127, 140, 141, 176, 185, 188.190 abnormalities 2 -assembled dendrimer conjugates 190 plasmid 176 purification 127 Drugs 3, 11, 12, 14, 15, 17, 60, 61, 96, 97, 98, 99, 100, 104, 128, 138, 188, 189, 190, 191, 194, 202 anti-cancer 104 anticancer 194 antiviral 104 chemotherapeutic 97, 188 encapsulated 97, 138, 190 hydrophilic 189 hydrophobic 189, 202 macromolecular 128 Duplex molecularly imprinted polymer

Е

ECM 171, 200 functions 171 hydrogels 200 Elastin 175, 180 insoluble 175 protein 180

(DMIP) 117

Kothawade and Pande

Subject Index

Elastolytic matrix metalloproteinases 175 Elastomers, synthetic 178 Electrical conductivity 64, 118 Electrochemical label-free immunosensors 122 Electrodes 53, 121, 199 ion-selective 121 Electromechanical transduction 181 Electron beams 40, 194 Electrophoresis 124 Electrospinning 169, 179, 184, 185 faces challenges 185 system 184 Electrospun 27, 184 fibers and hydrogels 27 nanofibers 184 Electrostatic 8, 184, 192 forces 8, 184, 192 Embryonic stem cells 16 Employing light-sensitive polymers 7 Emulsion stabilization 86 Endocytosis 98, 146, 193 cholesterol-dependent 146 receptor-mediated 193 Engineering techniques 202, 206, 211 Environment 14, 17, 53, 61, 64, 118, 170, 175, 192, 197, 204, 209 biological 204, 209 dry 53 moist 64 Environmental 3, 9, 63 factors 3, 9 pollution 63 Enzymatic-induced Crosslinking 40 Enzyme(s) 13, 14, 40, 41, 80, 81, 150, 184, 200 -catalyzed events 200 gastrointestinal 81 immobilizing 80 -mediated biomaterial processes 200 polymerization 200 **Epithelialization 52** Erythrocytes 81

F

Fabric padding absorbent materials 88 Fabrication 14, 15, 17, 26, 27, 36, 41, 140, 141, 169, 183 process 17

Polymers in Modern Medicine (Part 2) 227

scaffolding 15 techniques 14, 26, 36, 169, 183 FDA-approved commercial medicines 60 Fibers 27, 78, 88, 89, 90, 171, 184, 185, 202 bioresorbable 89 creating nanoscale 184 elastic 171 electrospinning 185 electrospun 27 Fibrous connective tissue 89 Fluorescence 127, 131 -labeled peptide 131 microscopy 127 Function 55, 56, 58, 63, 85, 86, 111, 112, 170, 171, 199, 200, 201, 203, 208 compromised cardiac 203 immunostimulatory anti-tumor 208

G

Gadgets 12, 16 fixation 12 intelligent 16 therapeutic 16 Gas chromatography 122 Gel 51, 194, 206 contraction 206 -forming systems 51 systems, cross-linked 194 Gelatin 39, 45, 54, 55, 74, 83, 84, 174, 175, 202, 204, 210 cooling heated 39 fish 83 mammalian 83 Gelation, chemical 37 Gels 44, 46, 54, 58, 61, 78, 194, 197, 198, 203, 206, 210, 212 cross-linked 194 Gene 98, 206 expression 206 therapy vectors 98 Glioblastoma 185 Glucose 115 oxidase 115 Glues, synthetic 57 Gold nanoparticles 96, 115, 188 Growth 39, 183, 185 hormones 183, 185 polymerization process 39

Η

Healthcare 14, 17, 49, 74, 90, 136 -associated infections (HAIs) 136 gadgets 14 industry 49 management 74, 90 technologies 17 Heart 170, 185, 202, 203, 210, 211 illness 203 issues 202 Heat 3, 145, 148 -killed mycobacteria 148 -labile enterotoxin 145 -sensitive polymer compounds 3 Heavy metal reduction 63 Hemostatic activity 55 Horseradish peroxidase 40 Hybrid polymeric systems 172 Hydrocolloid dressing 59 Hydrogel(s) 3, 29, 62, 176, 197, 198 biodegradability 29 machines 62 pH-dependent 3 pH-responsive 197 thermosensitive 176 three-dimensional photosensitive 198 Hyperthermal treatment 63

I

Imaging 102, 103, 129 technique 103, 129 technology 102 Immune 43, 136, 143, 148, 207, 209 response stimulation 148 system 43, 136, 143, 148, 207, 209 Immunity, adaptive 136 Immunization programs 135 Immunizing neonates 149 Immunological 43, 49, 142, 150, 152, 153, 214 homeostasis 152 responses 43, 49, 142, 150, 153, 214 Inert hydrophilic polymers 193 Infections 51, 62, 135, 136, 138, 142, 143, 144, 147, 203, 207, 208 autoimmune 207 healthcare-associated 136

pneumococcal 144 viral 135, 147 Infectious diseases 135, 136, 138, 147, 149, 156 life-threatening 156 Inflammation 43, 86, 148, 150, 182, 206, 210 prolonged local 148 Inflammatory mediators 146 Influenza 143, 148 vaccinations 148 vaccines 143, 148 Integration 5, 14, 26, 37, 97, 103, 105, 111, 121, 123, 124, 135, 156, 201 digital technology 111 instrument 121 metal 37 Ionic-mediated gelation 39 Ionotropic gelation and polyelectrolyte complexation 42 Ions, transitional metal 81 Irradiation polymerization 40

L

Lab-on-a-chip 111, 112, 123, 124, 131 systems 124 technologies 111, 112, 123, 124, 131 Lipopolysaccharide 153

Μ

Magnetic 3, 102, 103, 129, 195 forces 3 resonance imaging (MRI) 102, 103, 129, 195 Mechanical properties 55, 75, 117, 183, 201 Medical 15, 103 devices 15 imaging method 103 Mesh dressing 59 Metabolic 56, 213 shock 213 waste 56 Metal-organic framework (MOF) 186 Microenvironment, acidic 198 Microfluidic chips 126, 186 Microscopy, electron 99 Molecular 103, 116 imaging techniques 103 imprinting approach 116

Kothawade and Pande

Subject Index

Ν

Neural 169, 204, 205 stem cells (NSCs) 204, 205 tissue engineering 169, 204, 205 tissue fabrication 205 Neuraminidase 149 Neuromuscular systems 173 Nuclear tomographic imaging 130

Р

PET imaging 103 PLGA 140. 151. 153 microparticles 140, 153 systems 151 Polydisperse protein 45 Polymer 111, 112, 113, 119, 121 -based sensors 111, 112, 113, 119 inclusion membranes (PIMs) 121 Polymeric 27, 30, 34, 39, 63, 103, 104, 106, 107, 108, 128, 135, 136, 137, 153, 186, 188.198 hydrogel properties 30 nanomaterials 186 nanomedicine 103, 104 nanoparticles 63, 104, 106, 107, 108, 128, 135, 136, 137, 153, 188 network 27, 34, 39, 198 Polyurethanes 6, 52 adhesive 52 neurological 6 Positron emission tomography (PET) 103, 129, 130, 203 Pressure-sensitive sensors 6 Principal component analysis (PCA) 121 Processes 35, 36, 37, 48, 49, 52, 56, 59, 79, 103, 107, 122, 124, 178, 183, 184, 185, 186, 189, 194, 195 biodegradation 178 chemical 37 electrospinning 184, 185 filtration 79 injection 195 metabolic 103 Pullulan, hydrophobized 193

Polymers in Modern Medicine (Part 2) 229

R

Radio waves 103 Radiotherapy 101 Reactions 2, 6, 16, 37, 43, 44, 56, 57, 78, 182, 200, 202, 209 allergic 57 chemical 6, 37 immunological 182, 202 Redox 3, 41, 197, 198, 199 conditions 197 initiator system 41 processes 3 reactivity 199 response properties 199 Repair, neural 204 Resilin-like protein (RLP) 180 Respiratory syncytial virus (RSV) 136, 138, 149

S

Sandwich-based immunoassay 125 Sensors 28, 53, 62, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122 biochemical 28 chromatic 120 electrochemical 121 photolithography-based 122 plasmon resonance 118 Single photon emission computed tomography (SPECT) 129, 130 Skin 52, 53, 205 fibroblasts 205 healing 52 lesions 53 Smartphone-based detection 125, 127 Spectroscopy, surface-enhanced Raman 126 Swelling 35 capacity 35 properties 35

Т

Techniques 122, 169, 184, 186 electrospinning 169, 184 microfabrication 122 micropatterning 186 Technologies 123, 126, 185, 186

Kothawade and Pande

230 Polymers in Modern Medicine (Part 2)

electrospray 186 microfluidic 123, 126, 185 micropatterning 186 Therapy 2, 4, 18, 97, 101, 104, 186, 206 anti-tumor 104 gene 97, 101 synergistic combination 97 Tumor 97, 100, 107, 190, 208 cells 107, 190, 208 growth inhibition 100 microenvironment 97, 208

V

```
Vaccination(s) 150, 152, 156
immunoantigen 152
traditional 150
systems 156
Vaccine(s) 135, 136, 137, 138, 142, 143, 144,
147, 148, 149, 150, 151, 153, 154, 155,
156
biosynthetic 143
mucosal 150
polymeric 151
smallpox 143
treatment 155
```

W

```
Water 35, 115
osmosis 35
permeability 115
-swollen hydrogel film 35
Wound(s) 59, 60, 88
healing procedure 88
traumatic 59, 60
```

Х

X-ray diffraction, employing 124

Y

Yellow fever 137, 143

Sachin Namdeo Kothawade

Sachin Namdeo Kothawade is an associate professor in Pharmaceutics at SCSSS's Sitabai Thite College of Pharmacy, Shirur, with an M.Pharm from Poona College of Pharmacy and a Ph.D. from Savitribai Phule Pune University. He specialized in novel drug delivery systems and nanoparticles, he has 17 years of teaching experience. He published over 70 research papers, 10 textbooks, and 15 chapters in Scopusindexed books. He holds 4 Indian patents and has edited six books with renowned publishers like De Gruyter, Elsevier, and Springer. He has received research grants and is a life member of APTI.

Vishal Vijay Pande

Vishal Vijay Pande is the principal and professor in Pharmaceutics at N.N. Sattha College of Pharmacy, Ahmednagar, with 18 years of teaching and 1.2 years of industrial experience. He has published over 150 research papers in the national and international journals and authored 5 textbooks on Pharmaceutical Engineering. He has filed 5 Indian patents and received two international patents. He is a PG and Ph.D. guide, having mentored over 70 M. Pharm and 3 PhD students. He is a life member of several professional organizations, including APTI, IPA, and the International Association of Advanced Materials, Sweden.