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FOREWORD

The use of bioceramics for tissue engineering and regenerative medicine extends over two
centuries. Dorozhkin provided a detailed review of the history of bioceramics [1]. He noted
that Johan Gottlieb Gahn and Carl Wilhelm Scheele first described the presence of calcium
and phosphorus in bone in the second half of the eighteenth century [1, 2]. The first use of
bioceramics  in  medicine  occurred  in  the  late  nineteenth  century  when  Junius  E.  Cravens
distributed a calcium orthophosphate powder called “Lacto-Phosphate of Lime” for capping
the dental pulp during dental restorations [1, 3, 4]. Larry Hench's discovery in 1969 that a
sodium-calcium-phosphorous-–silicate glass possesses bone bonding functionality gave rise
to  the  clinical  use  of  “bioactive  glass”  materials  for  bone  repair  [5,  6].  The  term
“bioceramics” was first used shortly thereafter in 1971 [7]. The bioceramics field is now truly
global in nature and includes research, pre-clinical, and clinical activities involving various
types of bioactive and bioinert inorganic materials.

This  is  the  second  part  of  a  couple  of  books  edited  by  Saeid  Kargozar,  a  senior  assistant
professor in the Tissue Engineering Research Group of the Department of Anatomy and Cell
Biology  at  Mashhad  University  of  Medical  Sciences,  and  Francesco  Baino,  an  associate
professor in the Department of Applied Science and Technology at the Politecnico di Torino.
This second volume provides a comprehensive overview of the use of bioceramics for tissue
engineering and regenerative medicine, with focus on applications. In Chapter 1, Girija et al.
consider  the  use  of  hydroxyapatite  derived  from  biogenic  sources  for  biomedical  and
environmental  applications.  Rodríguez-González  et  al.  describe  the  use  of  three-
dimensionally printed bioceramics scaffolds for tissue reconstruction in Chapter 2. Chapter 3,
by Kargozar  et  al.,  reviews the  additive  manufacturing of  bioactive  glasses.  In  Chapter  4,
Kargozar et al.  consider the use of additive manufacturing to process bioactive glasses for
bone  tissue  engineering.  Crovace  and  Souza  describe  the  use  of  bioactive  glass  and  glass
ceramics for treating microbial infections in Chapter 5. In Chapter 6, Kargozar et al. review
the  use  of  bioactive  ceramics  and  glasses  with  improved  angiogenesis  functionality.
Pourshahrestani  et  al.  consider  the  potent  hemostatic  activity  of  bioactive  glass  and  its
composites in Chapter 7. Zheng and Xu describe the use of a combination of bioactive glass
nanoparticles and natural polymer-based hydrogels for bone tissue regeneration in Chapter 8.
In Chapter 9, Borges et al. consider the use of bioceramics and bioactive glasses for dental
regeneration and repair. Chapter 10, by Bhattacharya et al., reviews the use of bioceramics
and bioactive glasses for skin wound healing applications.

In  this  volume,  Professors  Kargozar  and  Baino  as  well  as  the  chapter  contributors  have
provided the bioceramics community with a comprehensive consideration of the bioceramics
field.  I  anticipate  that  their  volume will  be beneficial  to  students  as  well  as  researchers  in
academia, government, and industry as they continue efforts to improve our understanding of
the use of bioceramic materials for tissue engineering and regenerative medicine applications.

Prof. Roger Narayan
Joint Department of Biomedical Engineering

North Carolina and North Carolina State University
Raleigh, USA
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CHAPTER 1

Hydroxyapatite Derived from Biogenic Sources for
Biomedical and Environmental Applications
E.K. Girija1,*, V.S. Kattimani2, D. Muthu1 and R. Govindan1

1 Department of Physics, Periyar University, Salem 636 011, India
2 Department of Oral and Maxillofacial Surgery, Sibar Institute of Dental Sciences, Guntur,
522 509, India

Abstract:  Hydroxyapatite  (HAp),  one  of  the  calcium phosphate  minerals,  has  been
widely  used  for  biomedical  applications  because  of  its  similarity  to  bone  mineral
content. Synthetic nano HAp, despite being made from chemical precursors, differs in
composition from that of natural hard tissues such as bone and teeth. The properties of
synthetic HAp solely depend on the precursors and production processes employed.
Biogenic calcium resources such as fish scales, bones of animals and fish, and shells
from land,  freshwater,  and marine origin can be used to synthesise HAp, which has
trace elements that mimic the constituents of bone. Also, we have emphasised that HAp
can  be  synthesised  economically  from  one  of  the  abundantly  available  low-cost
biowastes, namely eggshells. There are numerous biomedical uses like bone substitute
material,  scaffold  for  bone  tissue  engineering,  drug  delivery  agent,  etc.,  and
environmental uses, notably as an adsorbent for heavy metal removal, dye degradation,
etc. This chapter will help readers understand the significance of natural resources and
methods for producing HAp from biogenic sources.

Keywords:  Biomedical  applications,  Calcination,  Calcium  phosphates,
Hydroxyapatite.

INTRODUCTION

Bone being the regularly repaired and transplanted tissue, the annual demand for
bone grafts and substitute materials is  constantly rising [1,  2].  Moreover,  when
skeletal muscles get damaged due to accidents, ageing, diseases, trauma, etc., the
ability  to  self-repair  the body is  limited and there  is  a  need for  graft  materials.
There  are  various  bone  grafting  procedures  based  on  the  available  native  bone
sources  like  from  self,  from  the  donor  of  the  same  species,  or  from  different
species  and  these  procedures  are  termed  autograft,  allograft,  and  xenograft,
respectively  [3].
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Though autograft remains a gold standard method for the reconstruction of large
bone lesions,  it  has several  drawbacks including limited availability,  donor site
issues such as pain, discomfort and the need for repeated surgery [4]. Despite the
fact  that  allografts  are  osteoconductive,  they  have  some  limitations  such  as
disease  transmission,  donor  site  morbidity,  cost  and  donor  availability  [5].  In
2021, the allograft sector, which includes demineralized bone matrix and others
commanded  over  55%  of  the  market  for  bone  graft  and  substitutes,  thus
accounting for the greatest revenue share of the bone graft market [6]. For bone
defect repair, a variety of xenografts are used, including bovine, porcine, coral,
and  others  [7,  8].  Although  it  has  some  advantages,  such  as  high  availability,
superior  porosity  for  bone  tissue  ingrowth,  and  less  cost,  the  risk  of
immunological  rejection  makes  it  less  desirable  [9].  Because  of  the  limits  of
native  graft  methods,  synthetic  graft  materials  are  in  high  demand  [9  -  12].

Recent  progress  in  functional  materials  research  and  development  for  various
biomedical applications has also led to advancements in orthopaedic care. Many
alloplastic  bone  graft  materials  have  been  developed  that  are  functional,
aesthetically attractive, non-inflammatory, non-carcinogenic and lower the chance
of  implant  failure  [13].  Synthetic  bone  grafts  of  ceramics,  polymers,  and
composites  are  available  [4].  The  ceramic  segment  is  further  divided  into
hydroxyapatite  (HAp),  biphasic  calcium phosphates  (BCP) and other  phases  of
calcium phosphate which dominated the market in 2021.

Bone is composed of 69 wt. % of mineral phase, 22 wt. % of organic matrix and 9
wt. % of water [14]. The predominant inorganic mineral component of the bone is
HAp which is nothing but a non-stoichiometric, ion-substituted calcium deficient
biological apatite. In bone and teeth, HAp is found in the nanocrystalline form.
Trace elements such as Zn2+, Na+, Mg2+, K+, Ba2+, F− and CO2− are also found in
the  bone  [15].  Because  of  the  fact  that  calcium  phosphates  like  HAp,  beta-
tricalcium phosphate (β-TCP) and various combinations of these are chemically
similar to bone composition and specifically, the structural resemblance of HAp
to  biological  apatite,  synthetic  HAp  has  excellent  osteoconductive  and
osteointegration  properties  making  it  a  popular  biomedical  material  [14].
Alloplastic  materials  are  being  investigated  extensively  as  alternatives  to  bone
grafts, and calcium phosphate based biomaterials, particularly HAp have a sizable
market as bone substitutes.

The high cost of synthetic HAp from commercial calcium and phosphate sources
is  a  serious  concern  [16,  17].  In  recent  decades,  calcium  rich  natural  biogenic
sources such as bovine and porcine bones, fishbone and scale, corals, seashells,
snail  shells,  oyster  shells,  eggshells  and  so  on  have  been  studied  for  HAp
synthesis. The non-stoichiometric chemical composition of HAp synthesized from
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natural  sources  is  similar  to  that  of  the  human  bone  since  they  contain  trace
elements  such  as  Na+,  Zn2+,  Mg2+,  K+,  Si2+,  Ba2+,  F-,  and  CO3

2-  [18,  19].  Being
biogenic  that  is  materials  derived  from living  organisms,  superior  cell-material
interaction and abundance at zero or low cost, HAp derived from natural sources
might be considered a prospective and economic biomedical material.

This book chapter focuses on HAp obtained from biogenic sources such as animal
bones, scales and shells. The extraction or synthesis of HAp from these sources
using  various  methods,  as  well  as  its  crucial  physicochemical  and  biological
properties  and  the  intended  biomedical  and  environmental  applications  are
covered.

BIOGENIC SOURCES

The  schematic  presentation  in  Fig.  (1)  depicts  various  calcium  rich  biogenic
sources used for HAp extraction or synthesis, as well as the various biomedical
applications of HAp. Calcium phosphate is found in the bones of vertebrates and
fish  scales,  whereas  calcium  carbonate  is  found  in  calcified  structures  of
invertebrates such as seashells, snail shells, coral, and sea urchins, as well as other
structures  like  eggshells.  The  mode  of  deriving  HAp  from  various  biogenic
sources can be separated into two approaches, one is extraction as HAp from the
biogenic source and the other is the synthesis of HAp using the biogenic source as
a calcium precursor.

Fig. (1).  Various biogenic resources used for deriving HAp and their applications.
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CHAPTER 2

Three-Dimensionally  (3D)  Printed  Bioceramic
Scaffolds for Tissue Reconstruction
Raquel  Rodríguez-González1,  Raquel  Rojas-Márquez1,  Emilio  Castro1,
Miguel Ángel Mateos-Timoneda1, Luis M. Delgado1,* and Román A. Pérez1,*

1  Bioengineering Institute  of  Technology (BIT),  Universitat  Internacional  de  Catalunya (UIC),
Barcelona, 08017, Spain

Abstract:  3D  printing  technologies  have  changed  the  manufacturing  of  tissue
engineering scaffolds upside down, giving new possibilities to obtain complex shapes
that  perfectly  resemble  patient  defects  using  old  bioceramics  or  new  materials
especially  developed  as  inks  for  3D  printing.

Bioceramics  have  been  commonly  used  in  tissue  regeneration,  mainly  bone,  due  to
their  high biocompatibility and in some cases,  bioactivity.  Moreover,  they can have
different compositions and proportions, which give rise to a wide variety of properties.
The main types of bioceramics are calcium phosphates and bioactive glasses, but there
are other ceramics such as zirconia and alumina.

The 3D printing of bioceramics is usually performed by mixing particles or powders of
ceramics with a polymer to obtain proper viscosity, and they can be printed through
DIW, SLA or SLS. After printing, they can be sintered to obtain a pure ceramic body,
or left as a composite. Additionally, there is a direct ceramic printing method based on
SLS that does not need a polymer for printing.

These results  indicated that  3D printing of  bioceramics has the potential  to  produce
large-scale  tissue  engineering  scaffolds  with  accurate  structure  and  functionality;
however,  further  studies  are  needed  to  improve  the  biological  response  to  the  3D
printed scaffolds.

Keywords:  Aluminia,  Bioglass,  Bone  regeneration,  Bioceramics,  Composites,
Calcium  phosphates,  DIW,  FDM,  SLA,  SLS,  Silica,  Sol-gel,  Zirconia,  3D
printing.
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INTRODUCTION

Tissue Engineering (TE), is defined as the discipline that seeks to repair, replace
or regenerate tissues or organs by translating fundamental knowledge of physics,
chemistry, and biology into practical and effective materials, devices, and clinical
strategies  [1];  mainly  relying  on  three  different  and  interconnected  pillars,  i.e.
cells,  biomaterials  and  their  3D  structures,  and  signals.  Recent  advances  in
cellular and molecular biology, especially in stem cell technologies and growth-
stimulating factors, have expanded our ability to fabricate tissues ex vivo and then
transplant them back into the patient, the final goal of TE [2, 3].

The other pillar of TE is biomaterials and their 3D structures, i.e. scaffolds. These
3D  structures  play  a  crucial  role  because  they  need  to  act  as  a  temporary
extracellular  matrix  to  support  cell  activity  and  ingrowth  of  the  newly  formed
tissue  [4].  The  scaffolds  should  mimic  the  architecture  of  the  targeted  native
tissue, thus, they should match the pore architecture, size and volume percentage
in  order  to  promote  tissue  ingrowth  and  vascularization.  Among  the  different
scaffolding  biomaterials,  bioceramics  have  been  traditionally  a  favorable
candidate,  especially  for  bone  tissue  engineering,  due  to  their  inherent
biocompatibility and bioactivity. Some are derived from biological sources such
as demineralized bone matrix, and others are synthetic such as, bioactive glasses,
calcium  phosphate  family  (hydroxyapatite,  β-tricalcium  phosphate,  and  α-
tricalcium  phosphate),  and  others  [5].

Traditionally, bioceramic based-scaffolds have been made by techniques such as
gas foaming, salt leaching, freeze-drying, and the polymer template method [6].
Even though, many of these methods are relatively simple and inexpensive, they
suffer from several drawbacks such as inflexibility and a lack of reproducibility.
More  importantly,  the  internal  structural  features  (e.g.,  pore  size,  shape,  and
interconnectivity between pores) and the overall shape of the scaffold cannot be
precisely  controlled.  This  main  drawback  has  been  related  to  a  heterogeneous
distribution  of  cells  and  non-uniform  tissue  ingrowth  [7].  The  application  of
additive  manufacturing  technologies  in  tissue  engineering  has  the  power  to
overcome these limitations of the classical scaffold fabrication methods. Thus, it
has emerged with a promise of manufacturing patient-specific scaffolds to repair
the damaged tissue. In recent years, the application of additive manufacturing in
tissue engineering has been growing exponentially [8]. These set of technologies
are based on layer by layer construction of 3D structures. Thus, they have allowed
to construct bioceramic scaffolds with highly sophisticated and precise structures,
which would not have been possible by using traditional methods. These methods
allow to have an absolute control over the physical attributes of scaffolds, such as
pore size,  pore  shape,  interconnectivity  between pores  and porosity.  Moreover,
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the overall shape of the scaffold can be designed as a 3D model and fabricated.
Among the various types of additive manufacturing techniques, stereolithography
(SLA), selective laser sintering (SLS), 3D printing (3DP), and direct-ink writing
(DIW) are the most  commonly used ones for  printing bioceramic scaffold,  and
they will be further explained in this chapter. These techniques can be generally
classified  as  slurry-based  and  powdered-based.  This  chapter  will  give  a  brief
overview of the different classes of bioceramics that can be processed by additive
manufacturing (AM) techniques. Afterward, the different technologies that can be
used in  TE will  be  described,  paying particular  attention to  the  better  suited to
process  bioceramics.  And  finally,  several  examples  of  3D-printed  bioceramic
scaffolds  will  be  discussed.

BIOCERAMICS FOR TISSUE ENGINEERING

Calcium Phosphates

Calcium phosphates (CaPs) are one of the most commonly used biomaterials in
bone regeneration, namely because of their chemical similarity to the mineral part
of mammalian teeth and bones [9]. Human bones are predominantly constituted
by  calcium  orthophosphates  (approximately  60  wt  %),  specifically  carbonate
hydroxyapatite (HA), while the other main components are collagen (30 wt %)
and water (10 wt %) [9, 10]. In addition to this chemical similarity, which renders
CaPs  as  biocompatible  materials,  implants  made  of  CaPs  are  also  bioactive,
meaning that they can form stable bonds with the bone [11, 12]. Moreover, these
biomaterials  are  also  osteoconductive  [13]  (they  allow  bone  growth  on  the
scaffold’s surface or pores) and some of them are osteoinductive [14, 15] (they
stimulate host pluripotent cells to develop into the osteogenic lineage).

The term “calcium phosphates”  encompasses  a  family of  materials  made up of
calcium (Ca), phosphorous (P) and oxygen (O), the latter two elements being part
of  phosphate  anions.  Some CaPs also  include hydrogen as  an acidic  phosphate
anion (like  H2PO4

-),  water  (CaHPO4·2H2O) and/or  hydroxide [Ca10(PO4)6(OH)2]
[16].  CaPs  can  be  classified  according  to  the  type  of  phosphate  anion
incorporated: polyphosphates [(PO3)n

n-], pyrophosphates (P2O7
4-), metaphoshates

(PO3
-) and orthophosphates (PO4

3-). Additionally, ortho and pyrophosphates can
be  further  distinguished  by  the  amount  of  hydrogen  ions  replaced  by  calcium,
giving rise to mono- [Ca(H2PO4)2],  di- (CaHPO4) (BCP), tri- [Ca3(PO4)2] (TCP)
and tetra- (Ca2P2O7) calcium phosphates [9, 17]. This section is mainly focused on
calcium  orthophosphates,  as  they  are  the  main  inorganic  component  of  hard
tissues  in  vertebrates  [18  -  20].

The  properties  of  different  calcium  orthophosphates  depend  on  their  chemical
composition. The name, chemical composition and solubility values can be found
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CHAPTER 3
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Abstract:  In  tissue  engineering  and  regenerative  medicine,  bioactive  glasses  (BGs)
offer many potential advantages. These inorganic substances belong to the bioceramics
family and are traditionally produced in powder and granular formats via the sol-gel
and melt-quenching synthesis routes. In order to mimic the native structure of human
tissues,  BGs  should  be  fabricated  into  three-dimensional  (3D)  constructs  (i.e.,
scaffolds).  There  are  specific  conventional  fabrication  methods  for  producing  BG-
based  scaffolds  (e.g.,  foam  replication);  however,  they  suffer  from  some  critical
limitations such as the lack of exact control on the pore dimension and distribution. In
this regard, additive manufacturing (AM), also known as 3D printing, has emerged for
the  generation  of  precise  and  high-resolution  BG-based  scaffolds.  Currently,  3D
printing of BG-based scaffolds is performed by using a series of well-developed AM
techniques, including direct 3D printing, selective laser sintering (SLS), robocasting,
and stereolithography (SLA). In some methods, BGs are added to polymeric matrices
and then introduced into the 3D printing machine as a raw material. In general, 3D-
printed constructs exhibit important advantages over conventionally-fabricated tissue-
engineering  scaffolds  in  terms  of  reproducibility,  scalability, architecture (e.g.,
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controllable strut thickness, pore shape and size), and biomechanical properties. It is of
significance that BGs can be simultaneously printed with mammalian cells (e.g., stem
cells), known as 3D bioprinting. Still, some challenges (e.g., decreased cell viability)
remain  that  should  be  addressed  by  conducting  further  research  and  proposing
innovative  solutions.

Keywords: Additive manufacturing, Bioactive glasses (BGs), Bioprinting, Bone
regeneration, Direct ink writing (DIW), Mesoporous bioactive glasses (MBGs),
Melt  quenching,  Osteogenesis,  Powder  technology,  Regenerative  medicine,
Robocasting,  Scaffold,  Selective  Laser  Sintering  (SLS),  Sol-gel  method,
Stereolithography  (SLA),  Tissue  engineering,  Wound  healing.

INTRODUCTION

There  is  a  growing demand for  suitable  bone substitutes  over  the  world  due to
increased  injuries  and  skeletal  disorders,  congenital  genetic  abnormalities,  and
obesity  [1].  In  this  regard,  autografts  and  allografts  are  considered  the  main
sources  and  golden  standards  for  replacing  large  bone  defects  [2].  However,
limited  availability  and  donor  site  morbidity  as  well  as  immune  rejection  and
disease transmission risks are mentioned the major remaining challenges ahead of
autografts and allografts, respectively [3, 4]. Moreover, it is difficult to process
these grafts in the shape and architecture of bone defects. Accordingly, synthetic
biomaterials  are  increasingly  used  for  fabricating  tissue-engineered  (TE)
constructs.  In  contrast  to  autografts  and  allografts,  synthetic  biomaterials  are
easily capable of generating three-dimensional (3D) scaffolds with varying sizes
and  shapes.  Until  now,  many  biocompatible  synthetic  materials  have  been
developed  and  used  as  bone  reconstruction  materials.  Among  them,  bioactive
glasses (BGs) have a unique position in research and clinical studies.

BGs  are  inorganic  substances  that  are  classified  as  bioactive  members  of  the
bioceramics superfamily. Melt-quenching and sol-gel synthesis are both common
methods  for  producing  them.  Their  invention  history  originates  with  Professor
Larry Hench's research at Florida University in 1969 [5]. The first developed BGs
is named 45S5 Bioglass® composed of 45SiO2–24.5CaO–24.5NaO–6P2O5 (wt.%).
This composition is known as the parent of silicate-based glasses in which silicon
oxide is the glass network former. In the course of time, other types of BGs were
successfully developed including phosphate- and borate-based glasses, in which
phosphorus oxide and boron oxide act as the glass network formers, respectively.
In 2004, a subgroup of BGs has been introduced under name of mesoporous BGs
(MBGs).  This  kind  of  porous  glasses  has  an  ordered  nano-texture  due  to  the
presence  of  pores  (size  -2-50  nm)  inside  their  particles.  The  size  and  shape  of
pores are controlled by structure-directing agents (e.g., Pluronic 123) used during
the sol-gel synthesis process. It is well known that BG formulations readily react
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with physiological fluids (e.g., blood plasma) to form hydroxyapatite, which is a
constituent of bone and binds to both hard and soft tissues. A number of studies
have demonstrated that BGs can improve healing [6 - 8]. This improvement is due
to  ions  (e.g.,  Si4+  and  Ca2+)  released  from  BG  structures  into  the  biological
environment,  which  influence  osteogenesis  and  angiogenesis  [9  -  11].  It  is  of
importance  that  different  formulations  of  BGs  show  appropriate  antibacterial
activities  against  both  Gram-positive  and  Gram-negative  species,  which  can
inhibit  bone  infections  [12].  To  improve  the  biological  properties  of  glasses,
therapeutic elements (such as strontium (Sr) having an anti-osteoporotic effect)
are commonly incorporated into their basic composition [13 - 16].

It  is  necessary  to  do  further  processing  steps  on  BG  fine  powders  in  order  to
generate 3D porous constructs capable of mimicking the natural architecture of
bone  tissue.  Traditionally,  BG-based  scaffolds  were  made  by  using  a  series  of
fabrication methods, including polymeric sponge replication [17]. Nevertheless,
traditional approaches are not able to control the scaffold structure (shape, pore
size,  etc.).  Therefore,  additive  manufacturing  techniques  can  be  used  to
manufacture 3D-printed BG scaffolds. Over the last 30 years, we have witnessed
the growth of additive manufacturing in different areas like biomaterials science.
During the past 5 years, applications of this technology, which is also referred to
as  3D  printing,  have  grown  significantly  [18].  3D  printing  is  a  manufacturing
method  that  can  provide  scalable  and  robust  fabrication  of  BG-based  scaffolds
[19].  This procedure would also enable the fabrication process to be controlled
precisely by creating constructs that are specific to each patient through computer
simulations [20, 21].

The purpose of this chapter is to discuss the suitability of BGs to fabricate 3D-
printed  scaffolds  for  bone  tissue  engineering.  In  order  to  achieve  this  goal,  we
discuss and introduce additive manufacturing processes for  the development of
BG-based 3D scaffolds.

ADDITIVE  MANUFACTURING  OF  BGS  AND  GLASS/POLYMER
COMPOSITES

General 3D Printing of BG Powder

In  tissue  engineering  applications,  BGs  are  extremely  useful  due  to  their
osteogenesis, angiogenesis, and antibacterial properties [22 - 25]. It is recognized
that doping specific elements to BGs networks boosts their therapeutic capacity in
medical  settings.  Doped  elements  mostly  include  strontium  (Sr),  copper  (Cu),
silver (Ag), zinc (Zn), magnesium (Mg), and cobalt (Co) [26]. However, the low
fracture toughness and high brittleness of BGs limit their use in treating defects of
load-bearing bones. This restriction is more serious in the case of porous glasses



88 Bioceramics: Status in Tissue Engineering (Part 2), 2024, 88-103

CHAPTER 4

Mesoporous  Bioactive  Glasses:  Effective
Biocompatible  Materials  for  Drug  Delivery  and
Tissue  Engineering
Saeid Kargozar1,*, Sara Gorgani2 and Ahmed El-Fiqi3

1 Department of Radiation Oncology, Simmons Comprehensive Cancer Center, UT Southwestern
Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390, United States
2 Tissue Engineering Research Group (TERG), Department of Anatomy and Cell Biology, School
of Medicine, Mashhad University of Medical Sciences, Mashhad 917794-8564, Iran
3 Glass Research Department, National Research Centre, Cairo 12622, Egypt

Abstract: Mesoporous bioactive glasses (MBGs) are a special subclass of bioactive
glasses  (BGs),  which  have  held  great  promise  in  biomedicine.  Compared  to  melt-
derived  BGs,  MBGs  exhibit  higher  bioactivity  (apatite-forming  capability)  due  to
highly ordered nanoscale pores (2 to 50 nm) in their structure. The size and shape of
well-ordered  pores  of  MBGs  depend  on  structure-directing  agents  (e.g.,  CTAB,
Pluronic  F-123,  and  Pluronic  F-127)  used  during  their  sol-gel  synthesis  process.
Having  a  mesoporous  structure,  MBGs  provide  great  opportunities  in  tissue
engineering  and  drug  delivery  applications.  Although  MBGs  have  been  mainly
explored for managing hard tissue injuries (e.g., bone defects), recent studies indicate
their usefulness in soft tissue healing as well. In this regard, MBGs can be utilized for
tissue  reconstruction  in  different  forms,  including  fine  powders,  granules,  and
scaffolds. In addition, MBGs have been found suitable vehicles for the delivery of a
wide range of chemicals, bioactive molecules, and pharmaceutical drugs. Loading and
delivery  of  antibacterial  (e.g.,  antibiotics),  pro-angiogenic,  and  anti-inflammatory
substances are commonly being performed using MBGs for improved and accelerated
tissue repair and regeneration. Furthermore, MBGs are regarded as promising DDSs for
localized delivery of anticancer drugs. Currently, it is feasible to make MBGs as smart
drug delivery systems (DDSs) with the help of chemical engineering approaches; for
example,  opening  and  closing  MBGs’  pores  are  achievable  by  stimuli-responsive
molecular  gates.  With  the  invention  of  three-dimensional  (3D)  printing  technology,
MBGs were  successfully  incorporated  into  polymeric  inks  to  generate  potent  tissue
substitutes capable of simultaneous tissue engineering and drug delivery.
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INTRODUCTION

Along  with  the  increase  of  human  diseases  and  disorders  and  the  shortage  of
donors,  there  is  an  urge  for  developing  tissue  substitutions  in  the  lab  and  the
utilization  in  the  clinic.  On  this  matter,  tissue  engineering  has  emerged  as  a
multidisciplinary approach for generating tissue and organ replacements using the
principles  of  materials  science,  biology,  and  medicine.  Three  main  building
blocks of tissue engineering include biomaterials, cells, and bioactive molecules.
From  a  biomaterial  point  of  view,  numerous  types  of  organic  and  inorganic
substances have been examined and used for the repair and regeneration of injured
tissues. Among them, bioactive glasses (BGs) have achieved a significant position
in the treatment of both hard and soft tissue complications.

Bioactive  glasses  (BGs),  as  the  second generation of  biomaterials,  have  shown
great  therapeutic  potential  for  managing  different  tissue  damages  and diseases.
BGs represent biocompatible materials with the ability to bind with both hard and
soft  tissues.  These  man-made  materials  were  initially  developed  by  Professor
Larry L. Hench at Florida University in 1969 and introduced to the world by the
name  of  45S5  Bioglass@  with  the  composition  of  45SiO2–24.5CaO–24.5NaO–
6P2O5  (wt%).  After  the  invention  of  silicate-based  BGs  (45S5  bioglass@),
researchers  and  scientists  could  synthesize  other  categories  of  BGs,  including
phosphate- and borate-based BGs. Currently, BGs are being prepared in diverse
formats  (e.g.,  fine  powders,  granules,  fibers,  etc.)  to  meet  the  requirements  of
tissue defects. Mechanically, BGs seem suitable materials for treating hard tissue
(bone  and  teeth)  lesions;  however,  recent  studies  have  emphasized  their
usefulness  in  managing  soft  tissue  injuries  as  well.  Experimental  studies  have
demonstrated the capability  of  BGs for  improving cell  proliferation,  migration,
and differentiation. In addition, they can inhibit bacterial infections and promote
neovascularization, leading to accelerated tissue healing. Still, the most distinctive
feature  of  BGs  is  associated  with  their  bioactive  nature;  a  hydroxycarbonate
apatite (HCA) layer forms on their surface after incubation in physiological fluids
(e.g., human plasma and simulated body fluid (SBF)).
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Two main approaches for the production of BGs are the melt-quenching and sol-
gel methods. From a biomedical engineering perspective, each synthesis route has
its pros and cons; for example, sol-gel BGs show higher bioactivity due to their
porous  structure.  Over  the  years,  materials  scientists,  physicists,  and  chemical
engineers  in  collaboration  with  biologists  and  medical  experts  have  tried  to
develop  novel  BGs  with  optimal  structural  properties  in  terms  of  tissue
engineering  and  drug  delivery.  On  this  matter,  mesoporous  bioactive  glasses
(MBGs) were developed as a new class of BGs with controlled and reproducible
textural  features.  These  substances  were  firstly  produced by Yan et  al.  [1]  and
then  by  López-Noriega  et  al.  [2]  using  the  sol-gel  method  combined  with  the
principles  of  supramolecular  chemistry.  In  order  to  produce  MBGs,  structure-
directing  agents  (surfactants)  should  be  added  to  the  sol  during  the  sol-gel
process.  Indeed,  surfactant  molecules  can  self-organize  and  generate  the
mesoporous  texture  via  the  evaporation-induced  self-assembly  (EISA)  process
under  specific  and  controlled  pH  and  temperature  conditions.  Cetyl  trimethyl
ammonium bromide (CTAB), EO20PO70EO20 (P123), and EO100PO65EO100 (F127)
and among the most frequently used organic templates for obtaining MBGs with
highly-ordered pores [3, 4]. The surfactants are amphiphilic molecules that exhibit
self-assembling  capability  in  aqueous  solutions  at  a  certain  concentration  (i.e.,
critical  micellar  concentration).  It  is  well-demonstrated that  the chain length of
surfactant and solution chemistry determine the pore dimensions and structures of
MBGs.

Structurally, MBGs have highly ordered nanoscale pores with diameters of 2 to 50
nm.  This  mesoporous  structure  enables  MBGs  to  have  higher  bioactivity  in
comparison with  other  types  of  BGs and plays  a  major  role  in  promoting their
apatite-forming ability. In addition, the mesoporous nature of MBGs provides an
outstanding  opportunity  for  loading  and  delivering  a  broad  range  of  bioactive
molecules (e.g., growth factors) and drugs (e.g., antibiotics) [5]. Accordingly, the
use of drug-loaded MBGs can potentially result in accelerated tissue healing in
vivo.  In  this  chapter,  we  firstly  introduce  the  structure  and  characteristics  of
MBGs  and  then  discuss  their  capacity  in  drug  delivery  and  tissue  engineering
applications.

Ordered Mesoporous Materials: A Brief History

The history of silica-based ordered mesoporous nanomaterials dates back to the
first  report  published  in  the  1990s  by  the  oil  industry  [6].  Indeed,  mesoporous
materials  represent  a  specific  type  of  nano-scaled  materials  that  have  ordered
arrays  of  uniform  nano-channels.  This  kind  of  material  has  attracted  much
attention  in  different  areas  of  science  (e.g.,  biomedicine)  due  to  its  excellent
structural features, including large pore volume (~ 1 cm3/g) and high surface area



104 Bioceramics: Status in Tissue Engineering (Part 2), 2024, 104-138

CHAPTER 5

Bioactive Glass and Glass-Ceramics for Managing
Microbial Infections
Murilo C. Crovace1,* and Marina T. Souza2

1  Bioactive  Materials  Laboratory  (LMBio),  Department  of  Materials  Engineering,  Federal
University  of  São  Carlos  (DEMa/UFSCar),  São  Carlos-SP,  Brazil
2 VETRA – High-Tech Biomaterials, Ribeirão Preto-SP, Brazil

Abstract: Bioactive glasses and glass-ceramics are promising materials for both hard
and  soft  tissue  regeneration  through  gene  activation  mechanisms  triggered  by  their
dissolution  products.  This  chapter  presents  a  key  property  of  bioactive  glasses  and
glass-ceramics of growing interest in materials science i.e their antibacterial activity.
The main compositions, including composites, with proven bactericidal action, were
gathered.  The current  understanding of  compositional  effects  on the  bacteria-killing
mechanisms  is  summarized  as  well  as  the  main  dopants  used  to  enhance  the
antibacterial  activity.  Finally,  examples  of  bioactive  glass-based  products  that  have
being developed for many important applications in orthopedics are presented, such as
the treatment of osteomyelitis, coating in metallic implants, the treatment of infected
skin wounds, and also in dentistry, in the treatment of oral ailments.

Keywords:  Anti-biofilm,  Antibiotics,  Bacteria,  Bactericide  material,  Bioactive
glass,  Bioactivity,  Bactericidal  activity,  Bioglass,  Bone,  Chronic  infection,
Diabetes,  Glass-ceramic,  Implant  failure,  Osteomyelitis,  Skin  burn,
Staphylococcus  aureus,  Tissue  regeneration,  Wound  healing.

INTRODUCTION

The  year  2021  marked  the  50th  anniversary  of  the  invention  of  45S5  bioactive
glass by Larry Hench, which was the first known synthetic material to exhibit an
unusual property: the ability to form a strong chemical bond with the bone. Until
the early 1980s, it was believed that bioglasses were only capable of binding to
hard calcified tissues such as bone. In the following years, it was discovered that
these materials were also able to bind to connective tissues, muscles, nerves and
even the skin, promoting their regeneration. Currently, bioactive glasses, or just
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“bioglasses”,  are  considered  third-generation  biomaterials.  Third-generation
biomaterials are capable of forming not only a direct link with living tissues, but
also releasing ions that stimulate specific cellular responses at the molecular level,
through the activation of certain types of genes.

Although the involved mechanisms are not yet fully understood, some bioactive
glasses can promote in situ regeneration of both hard tissues (bone, dentin, etc.)
and soft tissues (skin, cartilage and nerves). For this reason, these materials are
gaining more and more relevance within tissue engineering. Currently, there is a
vast  literature  proving  numerous  positive  properties  of  bioactive  glasses  and
glass-ceramics,  among  which,  the  following  are  highlighted:

• Osteoconduction and osteoinduction [1-3], that is, the ability to be colonized by
bone cells and stimulate their proliferation;

• Angiogenic potential [4, 5], that is, i.e. material can stimulate the formation of
new blood vessels;

• Ability to stimulate fibroblast cell proliferation and collagen production [6];

• Hemostatic properties (decreases local bleeding) [7].

After more than 50 years of its discovery, it is possible to find in the literature a
wide  range  of  compositions,  including  silicate,  phosphate,  and  borate-based
bioglasses. Glasses are, by nature, very versatile; most elements of the periodic
table can be accommodated in its structure [8]. Generally, bioactive glasses are
multi-component;  the  network  former  oxide  elements  (SiO2,  P2O5,  B2O3)  are
usually  accompanied  by  large  amounts  of  network  modifier  elements,  such  as
alkaline (Li2O, Na2O, K2O) and alkaline earth oxides (MgO, CaO, SrO), as well as
intermediate oxides (Al2O3, TiO2, ZnO, ZrO2) in a lesser extent. Novel bioactive
glasses have been developed by introducing small quantities of specific ions with
“therapeutic” function [9]. Their incorporation into the glass composition is called
doping  and  can  be  crucial  for  the  production  of  functional  materials.  Doping
elements  are  typically  added  in  low  concentrations  compared  to  the  main
constituents, ranging from a few parts per million (ppm) to a small percentage of
the main composition. In many cases, doping elements bring new functionalities
to  a  bioactive  glass  [10].  The  metallic  ions  that  are  being  incorporated  into
bioactive glasses to enhance their biological performance include, bismuth (Bi+3),
boron (B3+), copper (Cu+ and Cu2+), cobalt (Co2+), silver (Ag+), zinc (Zn2+), cerium
(Ce3+), gallium (Ga3+), niobium (Nb+5), selenium (Se+4), strontium (Sr2+), tantalum
(Ta+5), and vanadium (V+5) [11, 12]. As an example of their impact, we can cite an
improved angiogenesis in vitro and in vivo caused by the incorporation of copper
(Cu+ and Cu2+) and cobalt (Co2+) ions [11].
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The clinical demand for bioactive glass is increasing rapidly; the wide range of
applications  include  bone  grafts,  repairing  or  replacing  damaged/diseased  soft
tissues, bone cements, drug carriers and as coatings in implants. In the treatment
of  bone  or  soft  tissue  lesions,  there  are  three  main  factors  that  should  be
considered:  (1)  bioactivity  (in  more  general  terms,  the  ability  to  induce  tissue
regeneration through a chemical stimulus); (2) absorbability (the material should
be gradually replaced by the new tissue formed); and (3) prevention of bacterial
infection.  As  we  know,  the  colonization  of  an  implant  surface  by  bacteria  can
results in failed treatment. Implant infections can have serious consequences and
may  occasionally  require  a  second  surgery,  causing  significant  suffering.  In
addition  to  the  beneficial  properties  mentioned  above,  it  was  discovered  a  few
decades ago that bioactive glasses also have antibacterial activity. The contact of
bioactive glass with biological  aqueous fluids results in the release of ions that
make  the  surrounding  environment  hostile  to  bacteria  growth.  Thus,
compositional effects, including dopants, have long been investigated in order to
unravel the factors involved in this key property.

GLASSES AND GLASS-CERAMICS WITH PROVEN ANTI-MICROBIAL
ACTIVITY

Perhaps  the  first  publication  showing  the  interaction  of  a  bioactive  glass  with
bacteria was published by Stoor et al. in 1996 [13]. In this study, the S53P4 glass
was tested for the first time against periodontal pathogens. In 1999, Stoor et al.
[14] also studied the interactions both in vitro and in vivo between S53P4 and the
bacteria Klebsiella ozaenae, which is associated with atrophic rhinitis. For those
tests, the glass was used in the form of granules or discs. Additionally, a 19–74
months  clinical  follow-up study  with  ozena  patients  surgically  treated  with  the
S53P4  was  performed.  Patients  exhibited  no  implant  infections,  and  their
symptoms were significantly reduced. This indicates that S53P4 did not promote
adhesion  and  colonization  of  Klebsiella  ozaenae  (K.  ozaenae)  in  vitro.  These
findings  were  further  supported  by  the  absence  of  bioactive  glass-associated
infections or reinfections observed in vivo. Since then, bioactive glasses have been
tested  for  a  wide  range  of  clinically  relevant  bacteria,  aerobic  and  anaerobic
varieties, and for both Gram-negative and Gram-positive species (as summarized
in the Table 1). However, the absence of comparative studies carried out under the
same experimental conditions makes it difficult to draw conclusions or establish
direct  composition-bactericidal  activity  relationships.  In  fact,  in  the  published
studies, glasses are used with a great variability in terms of chemical composition
(e.g.  different  amounts  of  Na2O, CaO, SiO2  and P2O5),  shapes  and particle  size
distribution, and also surface area. The surface area is particularly important, as
the higher its value, the greater the reactivity of the glass will be.
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Abstract: Bioceramics form a versatile large family of biocompatible materials with
diverse  applications  in  the  medical  setting.  These  substances  can  be  classified  into
distinct groups, including almost bio-inert ceramics (e.g., alumina), bioactive glasses
and  glass-ceramics,  and  moderately  to  quickly  bioresorbable  ceramics  (e.g.,
hydroxyapatite  and  tricalcium  phosphates,  respectively).  Bioceramics  are
conventionally used for healing hard tissue injuries due to their excellent properties,
including mechanical performance. From a biological perspective, bioceramics exhibit
outstanding  features  (e.g.,  inducing  osteogenesis)  in  favor  of  bone  reconstruction.
Considering the central role of angiogenesis in tissue healing, different formulations of
bioceramics  have  been  demonstrated  to  have  stimulatory  effects  on  neovessel
formation. Apart from physical properties (e.g., surface micron and nano topography),
the chemical composition of bioceramics greatly affects their angiogenic capacity in
vitro and in vivo. Several additional approaches are now well-established in order to
increase  the  angiogenic  activity  of  bioceramics,  including  adding  pro-angiogenic
dopants (e.g., copper and silicon) and loading pro-angiogenic bioactive molecules (e.g.,
vascular  endothelial  growth  factor  (VEGF)).  In  this  sense,  the  degradation  rate  of
bioceramics  is  a  key  property  commonly  mentioned  to  effectively  promote
angiogenesis.  Cellular  and  molecular  experiments  have  revealed  the  signaling
pathways involved in angiogenesis which are activated by ionic dissolution products
released from bioceramics. In this manner, this review highlights the new positive role
that bioceramics can play in angiogenesis.
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INTRODUCTION

Bioceramics represent a versatile class of inorganic biocompatible substances in
the  field  of  materials  science  and  engineering  with  diverse  biomedical
applications,  ranging  from  dentistry  and  tissue  regeneration  towards  cancer
therapy and diagnostic (i.e., theranostics) [1]. They may be isolated from natural
sources  (marine  sponges)  or  produced  in  the  laboratory.  Bioceramics  can  be
classified  into  different  groups  including:  (I)  almost  bio-inert  ceramics  (e.g.,
alumina), (II) bioactive glasses (BGs) and glass-ceramics, and (III) bioresorbable
ceramics (e.g., calcium phosphates). Currently, they are produced and fabricated
in different shapes and forms, including fine powders, granules, three-dimensional
(3D) scaffolds, etc. [2, 3]. Bioceramics can be synthesized via different routes: for
example,  precipitation,  hydrothermal  techniques,  solution  combustion,  melt-
quenching, sol-gel methods, etc. [3 - 5]. It has been well-known that bioceramic
synthesis  method  affects  the  properties  of  the  final  product  in  terms  of
morphology,  particle  size,  porous  structure,  etc.

Bioceramics  have  been  historically  developed  and  utilized  for  managing  hard
tissue  disorders  (e.g.,  bone  fractures)  due  to  their  inherent  bone-like  physico-
chemical  and  mechanical  properties.  In  addition,  bioceramics  exhibit  stunning
biological features for bone repair and regeneration, including osteoconduction,
osteoinduction, osteogenesis, and osteointegration [6 - 8]. Apart from hard tissue
engineering,  bioceramics  in  specific  formulations  can  be  used  for  treating  soft
tissue  injuries,  such  as  skin  wounds  [9].  In  fact,  specific  members  of  the
bioceramics  family  can  support  the  growth  and  proliferation,  migration,  and
differentiation  of  cells  from  soft  tissues,  like  fibroblasts,  keratinocytes,  etc.  In
addition, the ability to inhibit bacterial infections and promote neovascularization
(angiogenesis) makes bioceramics advantageous materials for soft tissue healing
strategies. Regarding the central role of neovascularization in wound healing, a
large number of experimental studies have emphasized the use of angiogenesis-
inducing  materials  in  order  to  obtain  accelerated  tissue  reconstruction.  In  this
sense,  some  bioceramics  (mostly  BGs)  are  potent  substances  for  inducing
angiogenesis  in  vitro  and  in  vivo  [10].  Cellular  and  biomolecular  experiments
have  revealed  that  the  ion  release  from  bioceramics  into  the  surrounding
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biological  environment  is  the  main  reason  behind  improved  angiogenesis.  In
addition,  it  is  now  clear  that  the  surface  topography  (in  particular,  nano
topography)  of  bioceramics  can  influence  their  angiogenic  behavior.  Over  the
years,  several  innovative  approaches  have  been  applied  to  enhance  the  pro-
angiogenic  capacity  of  bioceramics,  including the  addition (doping)  of  specific
elements  (e.g.,  silicon,  copper,  etc.)  to  their  basic  composition  as  well  as  the
loading  of  pro-angiogenic  bioactive  molecules  (e.g.,  growth  factors,
phytochemicals, etc.) [11]. The degradation rate of bioceramics in physiological
environments directly dictates the degree and rate of ion release and, thus, their
subsequent  pro-angiogenic  capacity;  therefore,  the  selection  of  dopants  in
bioceramic composition is  of  great  importance for  tuning their  degradability  in
vivo.

In this chapter, we first describe the angiogenesis process and its importance in
tissue engineering strategies and then introduce the pro-angiogenic capability of
different  classes  of  bioceramics,  including  BGs,  calcium  silicate  ceramics,
calcium phosphate ceramics (CPCs), and calcium sulphate (CS) ceramics. In each
section, the impact of bioceramics is discussed on the behavior of cells involved
in angiogenesis,  including endothelial  cells  (ECs) and macrophages.  Moreover,
the differentiation of stem cells towards endothelial cell lineages as a result of the
ionic dissolution products from bioceramics is discussed.

ANGIOGENESIS: A CELLULAR AND MOLECULAR PERSPECTIVE

Angiogenesis is referred to as the sprouting of new vasculature from pre-existing
capillaries, which penetrate through the underlying vascular basement membrane
and  constitute  tube-like  structures.  Finally,  this  can  branch,  extend,  and  then
create blood vascular networks. Generally speaking, blood vasculature is formed
through  two  distinct  biological  processes:  including  vasculogenesis  and
angiogenesis. Indeed, vascularization plays vital roles in both pre-and post-natal
biological phenomena, including organ development (organogenesis) and wound
healing,  respectively.  It  should  be  mentioned  that  neovascularization  is  also
involved in the progression of some human diseases, specifically cancers [12, 13].
In normal physiological conditions, neovascularization is highly regulated by an
intricate network of various cellular and molecular constituents in a spatially and
temporally synchronized trend [14]. Angiogenesis is commonly regulated by pro-
and  anti-angiogenic  factors  presented  in  platelets  and  inflammatory  cells,
sequestering  within  the  extracellular  matrix  (ECM)  as  well.  Pro-angiogenic
factors  are  produced  in  response  to  hypoxia  (e.g.,  hypoxia-inducible  factors
(HIF)) and inflammation (e.g., cyclooxygenase-2 (COX-2)) conditions [15, 16].
Immediately  following  injury,  angiogenesis  stimulators  are  released  into  the
wound site and act in favor of vascular growth. Angiogenic GFs and cytokines
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Abstract: One of the key reasons for death is blood loss or hemorrhage from trauma or
surgeries. Management of bleeding by utilizing suitable hemostatic agents is therefore
important  to  diminish  related  complications  and  mortality.  In  recent  years,  the
application of bioactive glasses for hemostasis has shown promising results in both in
vitro and in vivo. In this chapter, we will highlight the mechanism of action of bioactive
glasses in accelerating hemostasis, review various forms of bioactive glasses and their
composites that have been assessed for potential application in promoting hemostasis
and stopping bleeding, and briefly include future perspectives.
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INTRODUCTION

Uncontrolled bleeding or massive bleeding resulting from surgical procedures and
trauma  may  have  life-threatening  consequences  [1  -  3].  Therefore,  immediate
management of blood loss is imperative to prevent such related complications and
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reduce  mortality.  When  an  injury  occurs,  hemostasis  is  the  body's  inherent
function (arrest bleeding) and encompasses three phases: 1) vasoconstriction, 2)
platelet  plug  formation,  and  3)  blood  clotting  cascade  that  leads  to  sealing  off
damaged blood vessels and thereby stopping bleeding [4, 5]. However, the body’s
natural  blood  clotting  process  is  not  capable  of  managing  excessive  bleeding
effectively,  and  thus  the  utilization  of  hemostatic  materials  as  an  external
intervention  is  required  to  achieve  efficient  and  swift  hemostasis  [2].

Over the past decades, various hemostatic materials composed of organic and/or
inorganic  compounds  such  as  chitosan  [6  -  10],  gelatin  [11  -  15],  oxidized
cellulose [16 - 20], alginate [21 - 25], carrageenan [26 - 29], zeolite [30], kaolin
[31 - 34], smectite [35, 36], or bioactive glasses [37 - 39], in forms of powders,
sponges, bandages, hydrogels, and adhesives, etc., have been developed and their
potential for hemostatic applications have been assessed [40, 41]. The hemostatic
biomaterials attain hemostasis via various mechanisms including the formation of
a  physical  barrier  and  /or  acceleration  of  coagulation  cascade  by  coagulation
factors’ aggregation or releasing therapeutic ions which result in blood cell and
platelet  adhesion  and  aggregation.  Among  the  developed  materials,  bioactive
glasses particularly mesoporous bioactive glasses (MBGs), have attracted much
attention owing to their excellent textural properties, biocompatibility, and their
capability to release therapeutic ions to promote hemostasis, wound healing and
prevent infection at wound sites.

Bioactive glasses (BGs) with the composition of SiO2–Na2O–CaO–P2O5 were first
reported  by  Hench  et  al.  over  50  years  ago  in  1969  and  prepared  via  melt
quenching technique [42]. These materials are known to have excellent properties
and bioactivity and can form a stable and strong bond with hard tissues (e.g., bone
and teeth) [43, 44]. Later, porous sol-gel glasses (SGGs) with a high surface area
were proposed by Li et al. in the 1990s [45]. The glasses with higher contents of
SiO2  and in  the  system of  SiO2–CaO–P2O5  were  found to  have wider  bioactive
compositions and bioactivity with respect to the melt bioglass and could exhibit
higher rates of bone bonding. However, pore size distribution in sol-gel glasses is
wide  and  insufficient,  and  may  not  be  suitable  for  the  effective  loading  and
release of drugs and biomolecules [43, 46]. In 2004, with a combination of sol-gel
and  supramolecular  chemistries,  MBGs  in  the  composition  of  SiO2–CaO–P2O5
were developed by Yan et al. [47]. The materials with a pore size ranging from 5
to  20  nm  are  known  to  have  a  high  surface  area,  pore  volume,  and  a  highly
ordered  mesoporous  structure,  and  in  comparison  to  conventional  non-porous
BGs,  they  display  higher  bioactivity.

Even though the biomedical applications of porous and nonporous BGs have been
primarily aimed for bone tissue engineering and drug delivery [43, 48, 49], they
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have recently been proposed for hemostatic and wound healing applications [37,
50]. In this chapter, after summarizing the proposed mechanism of how bioactive
glasses accelerate hemostasis, the recent advances in the hemostatic application of
porous and nonporous bioactive glasses in different forms of particles, and fibers,
as well as composite scaffolds and hydrogels are reviewed (Fig. 1).

Fig. (1).  Various forms of bioactive glasses and their composites for hemostatic applications.

Bioactive Glasses for Hemostatic Applications

Bioactive glasses alone in the form of powders or the combination with polymers
to  make  sponges  and  hydrogels  have  shown  great  promise  for  hemostatic
applications  because  of  their  excellent  properties.  The  hemostatic  function  of
bioactive  glasses  can  be  ascribed  to  multiple  factors.  For  instance,  it  has  been
described that the high surface area and porosity of the porous bioactive glasses
(MBGs),  play  a  vital  role  in  their  hemostatic  function  which  allows  them  to
absorb  water  from the  blood  and  concentrate  blood  components  (e.g.,  platelets
and clotting factors) (Fig. 2). Importantly, they can release numerous therapeutic
ions  from  their  frameworks  in  contact  with  biological  fluid  leading  to  the
acceleration of hemostasis. For example, Ca ions (coagulation factor IV) play a
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CHAPTER 8

Combination of Bioactive Glass Nanoparticles and
Natural Polymer-Based Hydrogels for Bone Tissue
Regeneration
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Abstract: Bioactive glass nanoparticles (BGNs) are multifunctional building blocks of
tissue  engineering  scaffolds  or  drug  delivery  platforms  for  bone  tissue  regeneration
owing to their favorable osteogenic, angiogenic, immunomodulatory, and antibacterial
activities. Natural polymer-based hydrogels are one of the most promising biomaterials
for numerous biomedical applications, considering their extracellular matrix (ECM)-
mimic structure, outstanding biocompatibility,  and biodegradability.  However, these
hydrogels  are  intrinsically  mechanically  weak  and  lack  biological  functionalities,
which impede their performance in bone tissue regeneration. Incorporating BGNs as
rigid fillers in natural polymer-based hydrogels has been proposed as a feasible strategy
to  combine  the  advantages  of  both  components  leading  to  advanced  nanocomposite
hydrogels. Here the synthesis approaches of BGNs that determine the nanoparticles’
morphology and properties are first summarized. The interactions between BGNs and
natural  polymer-based  hydrogels  are  also  emphasized.  The  key  physiochemical  and
biological properties of BGNs that are related to bone tissue formation are highlighted.
Published results are evidence of the fact that the combination of BGNs and natural
polymers toward nanocomposite hydrogels is a feasible strategy for successful bone
regeneration.

Keywords: Bioactive glasses, Nanoparticles, Natural polymers, Nanocomposites,
Tissue regeneration.

INTRODUCTION

Since the development of the first bioactive glasses (BGs) by Dr. Larry Hench in
the late 1960s, BGs, and their glass-ceramics derivatives have been recognized as
one  of  the  most  effective  biomaterials  for  bone  repair  and  regeneration
applications [1, 2]. BGs have been widely applied as bone substitutes, bone tissue
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engineering scaffolds, or orthopedic implant coatings. The first developed BGs,
45S5  Bioglass,  are  silicate  glass  composed  of  SiO2,  P2O5,  CaO,  and  Na2O
components  [2].  After  the  development  of  45S5  Bioglass,  numerous  BGs
compositions  with  unique  properties  have  been  developed  for  various  tissue
regeneration applications [3]. According to their type of glass network formers,
BGs can be divided into three categories, i.e., silicate, phosphate, and borate BGs
[3]. Each composition system has its pros and cons for bone tissue regeneration.
Particularly,  trace  elements  can  be  incorporated  into  BGs  structure  as  network
modifiers and released in ionic form to stimulate specific cellular activities toward
enhanced  tissue  regeneration  and  therapeutic  effects  [4].  Recently,  due  to  the
favorable  effects  of  released  ions,  the  applications  of  BGs  in  soft  tissue
regeneration and cancer treatment are attracting increasing attention [1, 5, 6]. In
addition to controlling chemical composition, the morphology of BGs can also be
tailored to modulate BGs’ properties [1, 4, 7]. For example, the spheroidization of
BGs can  improve  their  flow ability  and  benefit  their  performance  in  injectable
formulations [8].

Among  various  morphologies,  bioactive  glass  nanoparticles  (BGNs)  are
particularly attractive in fabricating tissue engineering scaffolds or drug delivery
platforms thanks to their uniform shape and size, large specific surface area and
surface-to-volume ratio as well as controllable size and porosity at the nanoscale
[1, 7]. Compared to their microsized counterparts, BGNs possess greater surface
reactivity resulting in accelerated mineralization and interactions with cells [7].
Moreover,  given  their  morphological  advantages,  BGNs  are  considered  more
suitable  building  blocks  than  microsized  BGs  for  developing  bone  tissue
engineering scaffolds and injectable formulations [9 - 11]. By tuning processing
parameters,  the pore structure (e.g.,  pore size,  porosity,  pore volume) of BGNs
can  be  controlled,  which  is  key  to  the  successful  applications  of  BGNs  in
regenerative medicine [12, 13]. These desired characteristics of BGNs highlight
their potential as multifunctional biomaterials for bone tissue regeneration.

Although  BGNs  have  exhibited  numerous  advantages  favorable  for  tissue
regeneration  applications,  they  still  suffer  from  some  limitations  impeding
successful  clinical  translation.  For  example,  BGNs are  available  in  the  powder
form, unsuitable for repairing large bone defects. It  is challenging for BGNs to
remain in defect sites due to the flowing of biological fluids and therefore BGNs
cannot give necessary support to cells for adhesion and proliferation as well as the
consequent vascularization and bone tissue growth. In addition, direct interactions
between cells and BGNs may result in massive uptake of nanoparticles by cells,
which  may  increase  the  toxicity  of  BGNs  to  cells  [14,  15].  To  address  these
challenging issues, BGNs can be used as building blocks to fabricate bone tissue
engineering  scaffolds  or  orthopedic  implant  coatings  [16].  For  example,  BGNs
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can be mixed with a suitable solvent or polymer solution leading to extrudable
inks for 3D printing. After the construction, the printed structures undertake high-
temperature treatment to obtain densified and pure BGs scaffolds [17]. However,
the application of high-temperature treatment may counteract the advantages of
BGNs over microsized BGs as the porosity and surface reactivity of BGNs could
be  reduced  due  to  nanoparticle  aggregation  and  the  removal  of  Si-OH  groups.
Alternatively, BGNs can act as rigid fillers in polymeric matrices to enhance their
degradability, and mechanical and biological properties [9]. BGNs have emerged
as  promising  rigid  fillers  of  hydrogels,  a  type  of  versatile  and  multifunctional
polymeric  material,  resulting  in  various  tissue  regeneration  applications  from
bone  repair  to  wound  healing  [8,  11].

Hydrogels are water-swellable polymeric materials with a 3D network structure,
generally  divided  into  synthetic  polymer-based  and  natural  polymer-based
hydrogels. They can mimic the extracellular matrix (ECM) microenvironment and
thus  facilitate  cell  adhesion,  differentiation,  and  tissue  regeneration  [18].
Synthetic polymer-based hydrogels (e.g., polyvinyl alcohol) possess remarkable
water absorption capability and outstanding mechanical properties. However, they
usually suffer from limited biodegradability and poor cell interactions, negatively
affecting  their  performance  in  tissue  regeneration  applications.  In  comparison,
natural polymer-based hydrogels (e.g., collagen, gelatin, chitosan, alginate, starch,
polypeptide) show excellent biocompatibility and biodegradability, highlighting
their potential in tissue regeneration areas [19]. However, natural polymer-based
hydrogels  usually  exhibit  weak  mechanical  performance,  significantly  limiting
their applications in bone tissue regeneration, particularly in load-bearing defect
repair  [20,  21].  To  address  this  challenging  issue,  many  strategies  have  been
employed to empower natural polymer-based hydrogels in terms of mechanical
properties,  including  incorporating  additional  phases  toward  double-network
hydrogels or nanocomposite hydrogels [20]. Inorganic nanobiomaterals such as
silica  nanoparticles,  hydroxyapatite  nanoparticles,  and  calcium  phosphate
nanoparticles  have  been  successfully  combined  with  natural  polymer-based
hydrogels  as  rigid  fillers  to  enhance  their  mechanical  properties  [22].  Among
these  inorganic  fillers,  BGNs  stand  out  with  their  advantageous  biological
properties  in  addition  to  their  mechanical  reinforcement  effects.  Alternatively,
natural polymer-based hydrogels offer BGNs with a 3D structure that can support
cell adhesion, growth, and differentiation [22]. Moreover, in this strategy, high-
temperature  treatment  can  be  avoided,  which  can  retain  the  porosity  and
bioactivity  of  BGNs.  A  combination  of  BGNs  and  natural  polymers  is  thus
proposed as a promising strategy for obtaining bioactive nanocomposite hydrogels
with enhanced structural, mechanical, and biological cues for tissue regeneration
applications.
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CHAPTER 9
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Abstract: Bioceramics applications in dental materials date back to 1892, and since
then, many advances have allowed the development of bioceramics for applications in
three main areas of dentistry: restorative, rehabilitative, and regenerative dentistry. This
chapter will cover clinical situations in which dental tissues need clinical interventions
using bioceramics. The main properties of these ceramics and their main advances and
applications  in  restorative,  rehabilitative,  and  regenerative  dentistry  will  also  be
addressed.  In  summary,  innovation  in  bioceramics  has  allowed  the  development  of
implants  and  restorative  materials  able  to  bind  to  the  dentin  and  enamel,  besides
showing suitable aesthetics and mechanical properties for applications in load-bearing
regions. These bioceramics have also been used as scaffolds in alveolar, mandibular,
and maxillary bone regeneration, and recently computer-based technologies like CAD-
CAM  and  3D-printing  have  guided  their  advances.  Finally,  future  perspectives  and
open questions are discussed at the end of the chapter.
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INTRODUCTION  TO  DENTAL  TISSUE  AND  THE  NEED  FOR
CLINICAL INTERVENTIONS

Dental tissue anatomy is divided into two main regions: the crown and the root
[1]. Exposed to the oral cavity, the crown is externally composed of enamel, the
most  mineralized  structure  in  the  human  body.  The  enamel  is  produced  by
ameloblasts that secrete extracellular matrix but are not found in the tooth when
fully developed. The extracellular matrix comprises 96% of the inorganic phase –
mainly  calcium phosphate  phases  like  hydroxyapatite  –  2% water,  1% organic
material,  and 1% other compounds [2 - 4].  In addition, there is another highly-
mineralized structure underneath the enamel, the dentin, which constitutes most of
the dental structure. The dentin has a 60% mineral phase, with a tubular structure
that confers mechanical strength to the tooth. Also, it mechanically supports the
enamel. However, it is not only found in the crown but also in the roots. In the
crown,  the  dentin  is  covered  by  the  enamel,  while  in  the  root,  the  dentin  is
covered by the cement – an ectomesenchymal tissue that allows the teeth fixation
on  the  alveolar  bone  through  the  periodontal  ligament,  besides  relieving  the
mechanical  stress  from  masticatory  loads  [2  -  4].  Inside  the  dentin,  the
conjunctive  tissue  in  the  pulp  cavity  comprises  dental  pulp,  odontoblasts,
fibroblasts, and dental pulp stem cells (DPSCs), all  of which are dispersed in a
complex extracellular matrix that also contains blood vessels and nerves. Besides
generating neurosensory stimulus, this complex structure is responsible for dental
repair [2 - 5]. Fig. (1) schematically shows the dental tissue structure and cellular
organization [6].

Caries lesions or fractures can cause losses in the dental structure. In this sense,
the  dental  tissue  itself  triggers  a  repair  response  that  is  dependent  on  multiple
factors: I) the presence of stem cells able to differentiate into specialized cells and
replace the lost cells; II) the integrity of the extracellular matrix; III) and stimuli
that induce the synthesis of growth factors, chemokines, and cytokines, provoking
and regulating  the  process  of  repair  and  regeneration.  Altogether,  these  factors
create a favorable environment for repair or regeneration since they regulate cell
behavior, differentiation, migration, and proliferation [7 - 9]. Although the dental
pulp shows regenerative responses in the pulp-dentin complex, there are certain
limitations, such as lesion extension, microorganism presence, operational factors,
and  patient  conditions,  which  can  interfere  with  the  endogenous  regeneration
mechanism. In this sense, the support of therapeutic approaches is necessary to
reestablish tissue homeostasis [10, 11].
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Fig. (1). Dental structure and tissue [6].

In  these  cases  -  where  endogenous  dental  repair  is  not  enough  to  repair  or
regenerate  lesions,  fractures  or  loss  of  dental  structure  -  dental  rehabilitation,
repair, and regeneration are therapeutic approaches that can be used to reestablish
the dental functionality. All these approaches are primarily based on biomaterials
that  aim  to  reassemble  a  functional  stomatognathic  system.  In  dentistry,
bioceramics have been used in clinical practice and research development field to
treat,  repair or replace dental structures and tissues. Some of these applications
include but are not limited to cement, pulp fillers, implants, and alveolar grafts [1,
11, 12].

The  following  sections  will  show  how  bioceramics  are  classified  according  to
their biological response in host tissue, besides establishing a relationship between
their  properties  and  their  application  in  dental  rehabilitation,  repair,  and
regeneration  processes.

Bioceramics used in Dental Applications

In 1892, Dr. Dreesman published the first work reporting the use of the plaster of
Paris to fill bone defects, which is recognized as the first use of a ceramic material
in  the  repair  or  regeneration  of  mineralized  tissues.  The  plaster  of  Paris  is  a
calcium  sulfate  hemihydrate  (CaSO3.½H2O),  which  can  be  easily  placed  and
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CHAPTER 10
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Abstract: This chapter provides an overview of wounds, distinguishing between acute
and  chronic  types.  It  describes  the  dynamic  process  of  wound  healing,  involving
hemostasis, inflammation, proliferation, and maturation. The role of growth factors and
cytokines  in  the  healing  process  is  highlighted,  along  with  the  importance  of  the
extracellular matrix. The text emphasizes that chronic wounds, often associated with
diseases like diabetes, tumors, or ischemia, have a higher likelihood of recurrence and a
prolonged healing period. Additionally, factors such as infections, stress, age, hormonal
issues,  and  medications  can  compromise  the  natural  wound  healing  process.  The
current market offerings for wound dressings, such as gauze and films, often fall short
in promoting effective wound healing due to various limitations. In contrast, specific
types  of  bioceramics  and  bioactive  glasses  have  shown  potential  for  co-delivering
therapeutic ions, presenting a smart approach to accelerate the wound healing process.
The  study  emphasizes  the  need  to  explore  and  develop  materials  with  therapeutic
efficacy,  moving  beyond  mere  wound  coverage  to  actively  promoting  healing  and
tissue regeneration.

Keywords: Antibacterial  efficacy,  Angiogenesis,  Bioceramics,  Bioactive glass,
Cell  differentiation,  Chronic  wounds,  Cytokines,  Extracellular  matrix,  Electro
spun,  Gap  junction  Cx43,  Hageman  factor  XII,  Hemostasis,  Hydroxyapatite,
Keratinocytes, Micronanofibre, Proliferation, Remodelling, Sol-gel, Woundcare
dressings, VEGF.

INTRODUCTION

A wound is generally defined as an injury or damage on the surface of the skin
due  to  any  physical,  chemical,  mechanical,  or  thermal  cause,  disrupting  the
regular  functioning or  atomic structure  of  the  site  [1].  Since the  skin is  always
exposed  to the  outside, it  is most prone  to injuries like  burns, ulcers, tears, and
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wounds caused due to accidental trauma, ballistic trauma, or any other cutaneous
injuries [2]. Acute wounds are healable within 8 to 12 weeks and do not generally
recur on their own [1]. A chronic wound, however, is caused due to diseases like
severe physiological contaminations, tumor, diabetes, ischemia, and venous stasis
disease, which have a high chance of recurrence and takes more than 12 weeks to
cure [1, 3]. The skin is composed of multiple layers as shown in Fig. (1).

Fig. (1).  Structure of the skin.

Wound healing is a dynamic process in which the dermal and epidermal tissues
are  repaired  and  regenerated  [4]  via  four  steps  [1,  3  -  6]:  the  rapid  response
process  of  hemostasis  initiates  immediately  [5],  followed  by  inflammation,
wherein neutrophils,  phagocytes,  etc.  enter the wound medium. In this,  various
growth factors like transforming growth factor (TGF)-β, platelet-derived growth
factor  (PDGF),  fibroblast  growth  factor  (FGF),  and  epidermal  growth  factor
(EGF),  along  with  cytokines  are  released  at  the  wound  site  [1],  followed  by
gradual  recruitment  of  necessary  tissues  [5].  Next,  in  the  proliferation  step,  an
extracellular  matrix  (ECM)  is  formed  leading  to  the  contraction  of  the  wound
finally [1, 5]. This is the final step called maturation or tissue remodeling. In this
step,  fibroblasts  completely  cover  the  surface  of  the  wound site  [1,  5].  Natural
wound  healing,  however,  may  be  compromised  due  to  several  factors  like
infections,  ischemia,  stress,  etc.  along  with  other  factors  like  age,  hormonal
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problems,  ongoing  medications  or  disease  like  diabetes,  leading  to  chronic
wounds [3, 5]. The wound healing process is schematically represented below, in
Fig. (2).

Fig. (2).  Schematic diagram of skin wound healing.

There are several wound dressings available in the market, like gauze, films, etc.
show advantages like being self-adherent, useful for covering the wound, and so
on.  But  these  materials  have  many  disadvantages  like  gauze  can  stick  to  the
wound bed,  causing mechanical  pain  on removal,  also  they are  dry  and cannot
control the moisture environment which is very important for healing [7]. Films
are  so  adhesive  that  during  removal,  they  pose  threat  to  removing  the  newly
developed epidermis, thus losing efficiency and causing pain. Hydrogels are not
adhesive but due to their high water content, their absorption capacity is very low,
making them unsuitable for wounds with high exudate [7]. The most concerning
fact  is  that  these  materials  may  be  used  for  only  covering  the  wound  site,
protecting the wound from the external atmosphere, and allowing time for self-
healing. Most of these market-available materials are unable to trigger the wound
healing cascade, which may help in faster closure and recovery of the wound. It is
thus  highly  imperative  to  develop  material  with  therapeutic  efficacy  for  the
healing  and  regeneration  of  the  skin.

In this regard, bioactive glasses have shown extraordinary angiogenic properties
and  can  be  blended  with  components  having  antibacterial  potency,  hemostatic
properties,  optimum bioactivity,  and  so  on  [8  -  10].  Such  abilities  of  bioactive
glass can have significant advantages when it comes to wound healing. Various
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