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FOREWORD 

 

I strongly endorse this exceptional book on the subject of differential equations. It 

covers all aspects of the field. It has a solid theoretical foundation and an applied 

focus, with many practical examples. It demonstrates how to program them using 

Maple, which is a leading mathematical software; and finally, it demonstrates how 

to generate graphics that clearly represent the nature of solutions and provide deep 

insights into them. All of these aspects are essential in the use of differential 

equations in modern mathematics, science, and technology. Thus, the book is 

equally useful for mathematicians, scientists, and engineers. As engineers should 

have some understanding of the theory of differential equations, also 

mathematicians should be able to program and generate graphical results.    

This volume is especially valuable because it presents all of these aspects in an 

integrated fashion.  It is written by a true expert in the field, an experienced 

teacher who has also carried out significant applied research. As a master teacher, 

Dr. Oyelami presents the material in a simple, straightforward, easy-to-follow 

manner. As an expert researcher, he knows first-hand the power of differential 

equations as a modeling tool, and his love for the field is clearly visible. The 

volume is also comprehensive in its coverage, especially in the areas of 

differential equations of the greatest practical interest. The students who study this 

material will be thoroughly prepared for employment in technical fields that use 

differential equations for modeling purposes. Such a student will also find the 

book to be a valuable continuing reference, both for its clear theoretical 

presentations and its useful and generalizable computer codes.  

Christopher Thron 

Associate Professor of Mathematics,  

Texas A&M University, Central Texas, USA  
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ENDORSEMENT 

 

I have thoroughly gone through this book, which can be considered to be a 

compendium of knowledge on Differential Equations at the Undergraduate levels 

in all ramifications. The book presents poignantly insightful views on quantitative 

and qualitative modeling, as it unleashes the tremendous power of differential 

equations techniques, with applications on current multifarious trends, including 

population dynamics, spread of viruses and diseases and neural networks. 

This book places the generally neglected implementation aspects of mathematical 

results on the front burner, with special implementations on the platform of 

Maple. In the above regard, the contributions of this book are exceptional and 

unprecedented. In terms of scope and diversity, the reader will be surprised by  

the unfathomable depth of knowledge and broad horizon of the author on the 

mathematical modelling of continuous processes by the deft deployment of 

differential equations. 

The book must be highly acclaimed for its balanced coverage of the theory, 

applications, and computational issues of differential equations and their 

solutions. It gives an effective exposition of differential equations and concepts 

with functional analytic support, as needed, with meticulously chosen examples, 

exercises and extensive use of Maple, currently regarded as the best mathematical 

software. This is the main thrust of the book, as it encompasses and emphasizes 

current trends of modern computational tools in enhancing the effectiveness of 

differential equations as an indispensable and core tool for modelling of processes 

that exist in the continuum. 

On the other hand, the book reinforces the reader’s understanding of ordinary 

differential equations, which, on the other hand, simulates and enhances the 

readers’ interest and curiosity about the immense modelling possibilities on 

ordinary differential equations platforms.  

This book vividly brings to the fore, the inconvertible fact that, for the most part, 

ordinary differential equations cannot be precluded in the modelling of real-life 

phenomena. This being an exceptionally well-crafted book with an abundance of 

realistic, well-researched examples, illustrations and exercises, will enliven 

discussions of ordinary differential equations, techniques and key modelling 

objectives that the reader will likely encounter in undergraduate courses and much 

more. 
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In view of the aforementioned attribute coupled with its lucid presentation, 

novelty of the abstract of each chapter and emphasis on digital implementations, 

this book deserves the highest recommendation. The book is a ‘must-read ‘and 

‘unputdownable’.  

Professor Ukwu  Chukwunenye 

Functional Differential Equations,  

Control theory & Industrial Engineering Specialist, 

Department of Mathematics, 

University of Jos, Jos, Nigeria 
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COMMENTS FROM RENOWNED SCIENTISTS 

 

‘‘I have gone through the whole book. It is simple, clear and easy to read and 

understand .I have no doubt in my mind that the book is a must for all students of 

Mathematics in Tertiary Institutions’’  

Professor M.O. Ibrahim 

University of Ilorin  

Ilorin and former President of Mathematics Association of Nigeria (MAN) 

 

‘‘The book will be a very good choice for both professionals across all fields of 

endeavours. The fact that the book does not assume familiarity with some basic 

mathematical concepts is an incentive in its appeal to those who have been out of 

school for some time. These qualities will increase its sellable quality in the 

market place as well as a recommendation to students on mathematical courses’’.  

Professor Emeritus A.A. Asere 

Department of Mechanical Engineering,  

Obafemi Awolowo University, Osun, 

Nigeria 
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PREFACE 

 

Ordinary differential equations are powerful tools for modeling and analyzing 

complex phenomena in various fields. Understanding ODEs is essential for 

making accurate predictions, optimizing systems, and solving real-world 

problems. ODEs are vital tools in study involving climate change, population 

dynamics, economic growth, chemical reaction, resource management, 

epidemiological growth of diseases and pandemic and drug administration.  

This textbook is an encyclopedia of techniques for finding solutions to ordinary 

differential equations. It was developed when lecturing students and researching 

at the Abubakar Tafawa Balewa University, Bauchi; Kaduna State University, 

Kaduna, Nigerian; Nile University, Abuja ; Plateau State University Bokkos, 

University of Abuja and Baze University Abuja all in Nigeria.  

This book comprises nine chapters and it is on ‘Vector valued ordinary 

differential equations and applications’. The Chapters are written bearing in mind 

beginners in the field of study who have little or no background on the course. 

This requirement is met by deployment of lucid and self-instructional language 

and utilization of scintillating examples throughout the book as well as illustration 

using Maple modeling and simulation software.  

The first chapter contains preliminaries like set theory, topological concepts and 

the formulation of vector differential equations. The second chapter and the third 

chapter are on Linear differential equations in the linear space , basic concepts  

related to topological structures are discussed such structures are   Normed and 

Banach spaces as applicable to solutions of ordinary differential equations. The 

proof of existence and uniqueness of solution for initial value problems (IVP), the 

‘power house’ of course finds its shape from fixed points.  Peano’s existence 

theorem and Picard Lindelof theorem are exploited in no small measure. The 

fourth chapter is on solutions to matrix initial value problems.  

The fifth chapter is about canonical transformation, a kind of transformation from 

scalar equations to vector equations. This chapter ends with the treatment of 

exponential matrices and estimation theory. The sixth is on Stability theory, 

Stability is a kind of graduation from continuous dependence on initial data 

localized to some finite interval of ),( E
 to more global generalized 

concepts. The seventh chapters examine the linear periodic systems with the 



vi  

Floquent rule extensively utilized. Also treated in this chapter are stability of 

linear perturbed systems and applications to neural firing models, avian influenza, 

population models. The ninth chapter is on numerical solutions to ODEs and 

applications to some models respectively 

Every part of the chapters in this textbook contains preambles without assuming 

students’ familiarity with some basic mathematical concepts. Hence it will prove 

to be a valuable and supplementary textbook for other courses in Mathematics and 

Engineering.  

Benjamin Oyediran Oyelami 

Department of Mathematics, Plateau State University,  

Bokkos, Nigeria, National Mathematical Centre, Abuja, Baze University,  

Abuja, Nigeria 
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CHAPTER 1 

Vector-Valued Differential Equations and Related 

Analysis Concepts 

Abstract: This chapter starts with the revision of basic concepts in real, complex, and 

functional analyses. Vector-valued differential equations are formulated and 

conditions for generating solution bases for the differential equations are stated. 

Keywords: Basic concepts functional analyses, Solution bases, Vector-valued 

differential equations. 

INTRODUCTION 

What are Ordinary Differential Equations (ODEs)? 

The branch of mathematics that studies equations involving derivatives of unknown 

functions is called differential equations. There are two classes of such equations 

that are classified according to the number of unknown variables involved. A 

differential equation is a relationship between an independent variable, x  and 

dependent variable y, and one or more derivatives of y with respect to x. Differential 

equations with a single unknown variable are called ordinary differential equations 

(ODEs). ODEs find applications in mathematical physics, electrical engineering, 

and mechanical engineering, for example in the vibration of strings [5-8] 

Ordinary Differential Equations (ODEs) are mathematical equations that describe 

how a quantity changes over time or space. They involve an unknown function and 

its derivatives, and are used to model a wide range of phenomena in science, 

engineering, economics, and other fields [1, 8]. 

ODE describes change over time or space .Typically involves rates of change (e.g., 

velocity, acceleration) and can be linear or nonlinear. ODEs can be solved using 

various methods, including: Analytical methods, numerical methods, 

approximation methods (perturbation theory) 
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In this textbook, efforts will be devoted to vector valued differential equations [5-

8].  The system will be formulated in matrix form and solutions obtained in matrix 

form. 

In most studies on scalar differential equations, the fundamental assumption made 

is that the solutions of the scalar equations exist and are uniquely determined. This 

may not be true in the general setting, therefore the need to establish the framework 

for existence and uniqueness of solutions of ODEs.    Theorems that guarantee the 

existence and uniqueness of solutions of ordinary differential equations [5-8] will 

be given in chapter three. Here we are considering the building blocks of tools for 

theorems on existence and uniqueness of solutions of ODES and associated 

analysis. 

PRELIMINARIES 

Let us briefly review some of the familiar notions in the set theory relevant to our 

discussion in subsequent chapters. 

Open Sets 

A set X is open, if there exists a neighborhood or ball that lies entirely in the set. 

Geometrically, a set X is open if we consider a sphere (ball) centered at with 

arbitrary radius which lies entirely inside the set. In set notation, we write

(See [3,4] 

Example 1.1 

An arbitrary sphere in n-tuples Euclidean space: 

1.         

2.                   

Closed Set 

A set X is closed if every open set in X lies in it, its boundary is inclusive. 

 

0x

0r

0( )S x X

2 2 2 2

1 2 1 01 2 02 3 03 0 0

0 0

01 02 0

( , ,..., ) : ( ) ( ) ( ) ... ( )
( , )

,( , ,..., )

n

n n n

n

n

x x x E x x x x x x x x r
S x r

x x x E

           
  

  

 2 1

0 0( , ) ( , ) : , , , 0S x r x y E a a a E ayx     
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Example 1.2 

A square such that . 

A set could be open and closed simultaneously, examples are: 

1.                                      

2.                           

3.           .  

Bounded Set 

X is a bounded set if there exists a positive constant M such that  for every

. 

Compact Set 

X is compact if any closed open subset whose union contains X has a finite subclass 

whose union also contains X. Heine-Borel theorem asserts that for a finite-

dimensional Euclidean space, compactness is equivalent to closedness and 

boundedness, for example: 

is compact in E2. 

Reformulation of compactness in terms of open cover is given by William [4]. The 

equivalent definition to compactness is the Weistrass-Bolzano theorem, which is 

stated as follows: Any infinite sequence  of has a subsequence which 

converges to . This is often called subsequent compactness from a topological 

point [2,3]. 

Connected Set 

Set  is connected if there exist two sets or points in X joined by an arbitrary line 

segment that lies entirely within X. 

 

0 0( , )N x r  2

0 0 1 2 1 2
( , ) ( , ) : , , 0N x r x x E a a ax x    

 1 : 0 1X x E x   

 2

1 21 2
: , , ( , )Y x E a b x x xx x    

   22 2 2
3 1 21 01 2 02

: 1( , ): ( ) ( ) 1X x E x xx E x x x x      

Mx 

x X

 2( , ) ( , ) : ,R x y x y E a byx   

{ }nx X { }nkx

x A

X
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CHAPTER 2 

Differential Equations in the Linear Spaces 

Abstract: Fundamental concepts in normed spaces are elucidated and linear systems 

are considered and applied to some problems. 

Keywords: Gronwall’s inequality, Linear systems, Norms, Normed spaces. 

INTRODUCTION 

In this chapter, we introduce fundamental concepts useful for studying differential 

equations in linear space. The topological structure on spaces such as the Norm and 

Normed Space will be defined with some examples. We will also present 

Gronwall’s inequality, the cornerstone of estimation theory in normed spaces [1, 6, 

7, 8]. Many problems in differential equations are from Banach spaces, that is, 

complete normed spaces. 

PRELIMINARIES 

A scalar function defined on the linear space  i.e.,  

is called a norm on (see [1-8]) 

 If the following conditions are satisfied: 

1.                      if and only if for  

2.                                           

3.                                              

Property (ii) is called triangular inequality. This can be generalized to a finite 

number of arbitrary vectors in  i.e., . At 

times, the triangular inequality is often referred to as Minskwoski ’s inequality, if

is defined on a metric space and satisfies all the properties of a norm, then the 

metric space is a normed space. 

( )X F : , [0, ). X E E   

X

0, 0x x  0,x  x V

x y yx 

x x 

V 1 2 1 2... ...n nx x x xx x      

.
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The couple forms a normed space. A normed space with the additional 

structure of being linear (Chapters 5 and 6) is referred to as a normed linear space. 

Example 2.1 

1. The space of continuous functions defined in is equipped with a norm 

given by the pair , forms a normed space [3, 4].   

2. The vector space of bounded continuous functions from the interval to the set 

of positive real numbers. i.e., with the norm, , 

. 

3. The Euclidean space En endowed with any of the following norms forms a 

normed space: 

 

                               (2.1) 

4. is the Banach space+ of all Lipchitzian functions in J strongly 

differentiable everywhere except for some finite number of points with range in the 

Banach space Y.   is endowed with the sup norm . 

+Readers familiar with metric spaces will quickly recognize that in the above 

equation, the three norms are equivalent in En and as a matter of fact, this forms 

what is called topological isomorphism in the normed space. A linear space is a 

vector space, which, in addition, is linear (See William [4] and Chen [1]). Here it is 

not our interest to study topological structures in detail [2-4].   

 

 

[ , ]. X

( )nC E
nE

[ ( ), ].
nC E

J

sup
nx E

f f


  

 ( , ) : sup , [0, ),( )
t J

f C J E J t Jf f tX




     

1 2

1

 for ( , ,..., )
n

n

i n

i

x x x x x Ex


  

1
2

2

1
1

max ,
n

i i
i n

i

x xx x
 



 
   

 


( , )L J Y

( , )L J Y
( , )

sup
f L J Y

f f



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Linear Systems 

The general first-order n-dimensional linear system is a system of the form: 

                                         (2.2) 

where is the  matrix function of whose elements are 

functions of ; is an open and connected in the sub-interval of

. If , equation (2.2) is said to be a homogeneous linear system, otherwise, 

it is termed nonhomogeneous.  

We remark that; if . Then 

there exists a unique solution passing through  [3, 5]. This, would 

be justified in due course when the existence and uniqueness theorems are treated. 

Lemma 2.1 (Gronwall’s inequality) (See [5-8]) 

Let  be a nonnegative real constant and let  and  be nonnegative and 

integrable on some interval  such that: 

                            (2.3) 

For  

Then: 

                                      (2.4) 

 

 

( ) ( ) ( ) ( )x t A t x t f t


 

( )A t n n t , 1, 2 .. [ ]ij i j na 

1 ( , )t E    I R

( )  0f t 

0 0 0 0 0 0 ( ,  )    | |  . || ||    ,  ( )  t x I with t x y t x      

( ,  )t x 0 0( ,  ( ))t x t

  

[ , ]a b

0

( ) ( ) ( ) ,

t

t

t s s ds a t b      

0 .a t t b  

0

0

( ) ( )exp( ( ) )

or ( ) exp( ( ) )

t

t

t

t

t a s ds

t s ds

  

  








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CHAPTER 3 

Fixed Point Theorems, Existence and Uniqueness of 

Solutions of Differential Equations 

Abstract: In differential equations, one of the cornerstones of most theorems and their 

framework (hypotheses) is the existence and uniqueness theorem. We consider 

theorems that guarantee the existence and uniqueness of solutions of differential 

equations. We consider the Carathedory theorem, Peano existence theorem, Picard-

Linderlof existence and uniqueness theorem, Brower and Schauder fixed point 

theorems. Picard successive approximation method is applied to establish the 

existence and uniqueness of solution to some initial value problems. Moreover, the 

conditions for the continuation of solutions from a given interval to an extended 

interval are also derived for ordinary differential equations. 

Keywords: Existence, uniqueness, Differential equations, Carathedory theorem, 

Fixed point theorems, Peano existence theorem, Picard-Linderloft existence, 

uniqueness theorem, Picard successive approximation method. 

FIXED – POINT THEORY 

Modern theorems on the existence and uniqueness of solutions to differential 

equations are from the so-called fixed theorems for which there are many versions 

[3,6-10]. Fixed point theory significantly utilizes some elements in functional 

analysis. This approach makes it a sophisticated and effective tool for solving 

differential equations. 

Fixed point theory has a variety of applications widely used in both integral 

equations and operator theory [9-11]. Our goal or prime concern in this chapter is 

its application to initial value problems (IVP).  Erwin [4], pp. 316 – 326) contains 

catalogues of applications of fixed-point theorems to integral equations and a 

systems of equations [14-15]. In particular, Garret and Gian [5] developed many 

iterative algorithms on fixed point theorems. 

Furthermore, the following three types of fixed-point theorems are given: Schauder, 

Banach – Caccioppolis and Brower’s fixed-point theorems. A concise statement of 

the theorems as was observed by Smart [14] is that every continuous mapping of a 

compact convex set to itself must have a fixed point. Besides, fixed point is a 

topological concept. It is fair for us to conclude from Smart’s assertion that any 

closed interval in E and a unit disc in E2 must have a fixed-point property. [ , ]a b
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Finally, the celebrated Picard-Linderlof existence and uniqueness theorem will be 

proved by a fixed-point theorem, to be specific, by Banach-Caccioppolis theorem. 

An alternative proof is found in Jack [7] where the proof was made by Schauder’s 

fixed point theorem. 

Peano Existence Theorem [see [7], pp. 14 – 15] 

If is continuous in a domain D, then for any initial data , there exists at 

least one solution of the differential equation: 

                                          (3.1) 

passing through . Note if the assumption on in the piano existence theorem 

is satisfied, then the existence of infinitely many solutions to the equation (3.1) is 

guaranteed. We will see later on that for initial value problems, whenever their 

solutions exist, it is always uniquely determined if is bounded together with its 

first derivative or if it satisfies the Lipchitz condition. 

Method of Picard Successive Approximation 

Solutions of differential equations can be approximated by sequences of points 

starting from the initial data. The successive approximated sequence of solutions 

converges to the actual solution of initial value problem (IVP) as , i.e. 

 as . 

Picard presents an iteratively appealing method now termed Picard successive 

approximation method. This method overcomes the problem of obtaining solutions 

to differential equations via approximations. The method is due to J. Liouville and 

others in the early 1800s, but, often credited to E. Picard and hence it is called the 

Picard iterative method. E. Picard further developed the method in 1893 See [1] and 

[7]. 

The method is as follows: 

Let where  belongs to the half real line,  such 

that  is continuous and locally Lipchitzian in a rectangular domain 

f 0 0( , )t x

( ) ( , ( ))x t f t x t




0 0( ,  )t x f

f

 kx t 

kx x t 

0 0( ) ( , ( )), ( ) ,x t f t x t x t x


  t [0, )J  

( , ( ))f t x t
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.Then that there exists a unique 

solution to equation (3.1) given by the successive approximation scheme: 

 

The sequence converges uniformly to the solution of equation (3.1) in the 

interval . 

Lemma 3.1 

Let                 

Then: 

                                         (3.2) 

                                  (3.3) 

L is Lipchitz constant. By induction on , 

                                    (3.4) 

Hence: 

            (3.5) 

 0 0( , ) ( , ( ) : , ( )R t t t t x t x        


0

0 1 0( ) ( , ( )) ,  for 0,1,2,...

t

k n

t

x t x f s x s ds t t k   

 kx ( )x t

0[ , )J t 

0

0 1 0
[0, ]

( ) ( , ( )) , , sup ( , ( ))

t

n n
t T

t

x t x f s x s ds t t m f t x t


   

1 0 0x x m t t  

2

2 1 0||  -  ||  -  
2!

L m
x x t t

k

k+1

1 0||  -  ||  -  
( 1)!

k

k k

L m
x x t t

k
 



1

0

1 0

0 0

0

[ ]
[exp 1]

( 1)!

[exp( ) 1]

[exp( ) 1]

k

k k

L t tm m
x x L t t

L k L

M
L

L

M
L t t

L



 




    



 

  

 



 Ordinary Differential Equations and Applications II, 2024, 35-58 35 

Benjamin Oyediran Oyelami  

All rights reserved-© 2024 Bentham Science Publishers 

  
 

CHAPTER 4 

Matrix Solution to Initial Value Problems 

Abstract: In this chapter, we will consider methods for estimating the norm of a matrix 

and matrix exponents. The conditions for the existence and uniqueness of solutions 

are considered for ordinary differential equations using the Lipchitz conditions. 

Adjoint systems are revisited together with the application of the Carathedory theorem 

to some selected problems. 

Keywords: Adjoint systems, Carathedory theorem, Lipchitz conditions, Matrix 

exponents, Ordinary differential equations, Uniqueness. 

INTRODUCTION 

We extend the idea of the norm of a vector to a matrix. Matrix exponentials of a 

vector-valued differential equation (VDEs) are found in this chapter. Fundamental 

matrix solutions will be obtained for VDEs together with their corresponding 

adjoint systems using a vector version of variation of constant parameters. 

Consider: 

                                            (4.1) 

On , the matrix plays a central role. It will be useful to evaluate a 

norm for a matrix [1-5]. 

We define such a norm and illustrate its usefulness in estimation and continuous 

dependence of the solution of equation (4.1) on the initial data
.
 

NORMS FOR MATRICES 

Definition 4.1 

The norm of matrix A with elements  will be defined as: 

                                         (4.2) 

( ) ( ) ( )x t A t x t




[ , ]J   ( )A t

0 0( )x t x

[ ]ija

1
max

n

ij
j n

i

aA
 

 
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i.e. the maximum of the sum of the absolute value of elements in each column. 

Many other definitions are available, for example, an alternative definition 

analogous to the norm of an operator is given as: 

                                    (4.3) 

i.e. the best upper bound for . 

At times, in some texts, one finds it being defined as: 

                                                                                                    (4.4) 

i.e. the sum of the absolute entries of matrix . It must be mentioned that each of 

these norms is equivalent to one another, the square of the norm , i.e. in the 

equation. (4.3) is the maximum of each value of matrix A. 

Norm of a Vector 

The norm of a vector with components  

is defined by                                   

Note,                     (see [1,7,9-11]) 

Observe that . 

Properties of Matrix Norm 

Let A and B be square matrices and I is a column n-vector 

 

1

0

limsup

       limsup

         =inf :

x

x

A Ax

Ax

x

k Ax x











Ax

1 1

n n

ij

j i

A a
 



[ ]ija

A
2

A

1 2, ,...., ne e e

1

n

i

i

E e




, ,
min maxij ij

i j i j
a x Ax a x 

1I 
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Such that: 

i. zero matrix  

ii.  (Triangular inequality) 

iii.  For every complex number. 

iv.  

The reader will quickly notice properties; (i) through (iii) as those of a norm. 

Properties together with the vector space of square matrices constitutes a normed 

space. 

Example 4.1 

Prove the above-stated properties of the norm of a matrix. 

1.  . Since , if and only if . Therefore, 

if and only if   

 

2.                                

In the same vein, 

 

0,  0 [0],A A A   

A B A B  

A A  

A A 

{1,2,3,..., }
1

max
n

ij
j n

i

aA




  0ija  0ija  0ija 

0, 0A A  [0]A 

 

1
1

,
,

max

max

n

ij ij
j n

i

ij ij
i j

i j

A B a b

a b

A B

 


  

 

 





1
1

max ij j
j n

i n

AE a E A E
 

 

 

1 1 1 1

max max
n n n n

ij ij ij ij

j i j i

AB a b a b

A B

   

 



 
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CHAPTER 5 

Canonical Transformation and Matrix Solutions of 

Differential Equations 

Abstract: We consider canonical transformation for transforming scalar differential 

equations to matrix differential equations. We determine conditions for linear 

independence of solutions using the Wronskian method and use the Jordan canonical 

form to find bounds for solutions of ODES. Also considered are: the generalized 

eigenvectors method for obtaining matrix solutions to ODES and corresponding 

bounds for the autonomous differential equations, upper and lower bounds for 

solutions. Conditions for continuous dependence of solutions on initial data are 

formulated. Periodic systems are studied too with the application of the Floquet rule 

to finding solutions to some linear periodic systems. The Theorem on how to construct 

monodromy matrices is presented for the linear periodic systems together with some 

examples. 

Keywords: Autonomous differential equations, Canonical transformation, Floquet 

rule, Jordan canonical forms, Matrix solutions, Monodromy matrices, ODES 

solutions, Periodic systems, Upper and lower bounds, Wronskian method. 

INTRODUCTION 

This chapter looks at the canonical transformation method, and transformations of 

scalar equations into vector forms [1-5]. The fundamental matrix, principal matrix, 

and adjoint to homogenous systems are revisited. The theory of autonomous linear 

homogeneous systems will be introduced together with the canonical transform 

process in Jordan Canonical form. We will construct fundamental matrix solutions 

using Sylvester’s formula and derive upper and lower solution bounds to ODES. 

We will investigate how solutions of ODEs continuously depend on initial data. At 

the end of the chapter, linear periodic systems and applications are to be considered 

with examples given. 

Canonical Transformation 

Suppose we have a scalar differential equation: 

1

1( ) ... ( ) ( )n n

nD y a t D a t y g t                                  (5.1) 
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Our interest is to find an equivalent vector equation having the same solution as the 

equation (5.1). 

Canonical transformation provides us with a methodology. 

Let: 

1

1 2

2 2

1 2 3

1

1 1 2 1 2

Then

( )n

n n

y y

Dy Dy y

D y D y Dy y

D y a y a y a y g t



 


 

   





      

                    (5.2) 

Let 1 2( , ,..., )T

nx y y y then:  

( ) ( )x A t x h t


                                          (5.3) 

Where: 

, {1,2,..., }

1 2 2 1

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0
( )

0 0 0 0 1

ij i j n

n n n

aA t

a a a a a



 

 
 
 
 

     
 
 
 
     

                  (5.4) 

( ) [0,0, , ( )]Th t g t  

 

We recall the definition of Wronskian of 1 2[ , , , ]n    of (n) continuously 

differentiable functions: 
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1 2

1 2
1 2

( 1) ( 1) ( 1)

1 2

[ , , , ]

n

n
n

n n n

n

W

  

    

  

  

  

                            (5.5) 

We said in (Chapter 3 ,section 3) that 1 2, , , n    are linearly independent on the 

interval 0[ , )t   if 1 2[ , , , ]nW     does not vanish for at least one 0[ , )t t  . 

Otherwise, triviality of the Wronskian 1 2[ , , , ]nW     implies the linear 

dependence of 1 2[ , , , ]n   (see [6, 8]). 

Theorem 5.1 

Let 0 0( ) ( ) ( ), ( )x t A t x t x t x


  , 0[ , )t t  , where ( )A t is an n-square matrix function 

of t on the interval [0, )J   . By close analogy, the exponential matrix is similar 

to the scalar exponential function and shared same properties with the exception of 

commutativity which breaks down in the case of exponential matrices. 

Let ,A B  be n n  matrices. Then the following are true: 

1.
A B A Be e e                                           (5.6) 

2.
1( )A Ae e    (inverse)                                    (5.7) 

Warning 

No mistake should be committed in assuming commutativity for 
Ae and

Be . In 

general, it is not guaranteed. In 1927, N H Abel established a relation for obtaining 

the Wronskian of solutions of differential equations using the traces of matrices of 

second order equations. The ideal was later generalized by J. Liouville and M. V. 

Ostrogradsky to nth order equations [7]. 

Theorem 5.1 

If 1 2, ,..., nx x x are solutions of equation (5.3), 
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CHAPTER 6 

Stability Theory 

Abstract: Stability including its characterizations is considered using quantitative and 

qualitative theories. Stability criteria are discussed using the Routh-Hurwitz criterion 

and fundamental matrices. Stability is investigated for nonlinear systems through 

linearization and Lyaponov’s methods. Applications are made to single and multi-

species population models. 

Keywords: Fundamental matrices, Linearization, Lyaponov’s stability, Multi-

species populations, Nonlinear systems, Routh-Hurwitz criteria, Stability criteria, 

Single species populations. 

INTRODUCTION 

Stability over the century has constituted the backbone of study for modern 

dynamical systems. Scientists and engineers often take this concept into 

consideration whenever a mechanism is to be designed [1,2,3,5]. 

Intuitively, the concept could be said to have evolved from the study of the behavior 

of a system when perturbed (disturbed) from its equilibrium (resting) positions 

when the motion would not radically deviate from resting positions; for example, 

the vibration of a simple pendulum, when displaced from the equilibrium position 

in such a way that the amplitude of the oscillation is small. 

The motion of a ball on a smooth parabolic surface is a motion exhibiting stability 

phenomenon [10]. 

Stability Theorems 

Consider the initial value problem (IVP):  

              
0 0( ) ( , ( )), ( )x t f t x t x t x



                                          (6.1)  

Where, ,  is an open and connected subset of . Assuming

has the property that the solution exists and is unique, for example, if 

( , )nf C I E   nE f

0 0( , , )x t t x
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0 0( , , )x t t x is a solution and f satisfies the hypotheses of the Picard-Linderlof 

existence and unique theorem (see Chapter 10) . 

The core or central question of stability is as follows: is there a special solution

 existing on the interval such that a small perturbation would 

result in small deviations from system behavior? If such a solution exists, we say 

such a system is stable, otherwise it is unstable [7-10]. 

Stability treatment covers a vast majority of phenomena. For the purpose of a 

comprehensive study, our scope of discussion will encompass three considerations, 

namely stability through ( )  argument. The interpretation of this will be given 

when the fundamental definition of stability is stated. Secondly, we will consider 

stability via fundamental matrices and finally, by the use of a scalar function called 

the Lyapunov stability function [4-7]. This method is fundamentally based on the 

energy concept. 

Stability and its Characterization by ( )   Argument 

Definition 6.1  

Let 0 0( ) ( , , )t t t y  be a solution of (6.1) such that . The solution is 

said to be stable (in Lyapunov sense, L. S.), if given , there exists 

, such that  implies that: , 

for every 0t t ; otherwise unstable ( )t  is asymptotically stable if it is stable and 

in addition: 

                                 (6.2) 

 is uniformly stable, if the choice of  is independent of  or 

equivalently, for every 0  , there exists ( )T   such that  implies that

. 

Fig. (6.1) gives a diagrammatic explanation of the Stability concept which shows 

that a system is stable if the trajectory of the solution remains in the circle 𝑺𝟏 with 

a small radius 𝝐 > 𝟎  for a given circle 𝑺𝟐 with radius 𝜹 > 𝟎 containing the initial 

0 0( , , )t t x 0[ , )t 

0 0( )t y  ( )t
1

00, t E 

0( , , ) 0t t   0 0x y  
0 0 0( , , ) ( ) , ( )x t t x t t t T    

0 0( , , ) ( ) 0 as x t t x t t  

( )t
0( , , )t t  0t

0 0x y  

0 0 0( , , ) ( ) , ( )x t t x t t t T    
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data of the system. The trajectory will never penetrate the boundary of 𝑺𝟏 

(‖𝒙(𝒕)‖ < 𝝐, 𝒕 ≥ 𝒕𝟎) for the finite value of norm of the initial data (‖𝒙𝟎‖ < 𝜹). 

 
Fig. (6.1) Stability definition. 

Geometric Interpretation 

A solution  is called a trajectory of motion in Definition 6.1. This is 

interpreted as follows: The origin 0 is stable if given  and: 

                                                 (6.3) 

there exists a ball 2S where: 

,  in ,                               (6.4) 

such that the trajectory will never penetrate S2. 

For asymptotic stability, if conditions in Definition 6.1 hold, then  

as . Stability can be geometrically interpreted in terms of trajectories 

remaining in the cylinder of infinite radius . 

In Engineering, asymptotic stability is desirable since the solution eventually 

decays to zero. 

0 0( , , )x t t x

0

1 { : }nS x E x  

2 { : }nS x E x      nE

0 0( , , ) 0x t t x 

t 




112 Ordinary Differential Equations and Applications II, 2024, 112-125  

Benjamin Oyediran Oyelami  

All rights reserved-© 2024 Bentham Science Publishers 

  
 

CHAPTER 7 

Stability of Perturbed Systems 

Abstract: The stability property is investigated for perturbed linear autonomous and 

non-linear systems using linearization and Lyapunov’s methods. Some examples are 

given on the stability of some nonlinear systems through eigenvalues of the linearized 

systems and coupled with the estimation of the norm of the error of approximation. 

Keywords: Eigenvalues, Linearization, Lyapunov’s method, Nonlinear systems, 

Non-linear systems, Perturbed linear autonomous, Stability properties. 

INTRODUCTION 

A system, from an energy perspective, could be said to have stable equilibrium if it 

is in the least energy state or when its energy is non-increasing. It could be said to 

be stable if its solution evolved in such a way that a small change in the equilibrium 

point will not lead to a radical change in the behavior of the system. If it does, it is 

said to be unstable [1-4]. 

This chapter, the stability of linear perturbed systems including periodic ones is 

considered. Moreover, Lyapunov stability technique which is also called the 

“Lyapunov second method” is introduced and it is a generalization of the energy 

concept. The emphasis is on how to qualitatively investigate the stability properties 

of equilibrium of a system. We will consider a linearizing procedure and establish 

the stability properties of nonlinear systems from the linearized ones.  

Furthermore, we will construct Lyapunov functions and use them to obtain some 

stability criteria for the equilibrium points of some systems. Different types of 

stability will be studied using the Lyapunov second method [5-7, 12]. 

Stability of Linear Perturbed Systems 

In this section, without loss of generality, the stability of perturbed linear 

autonomous systems will be closely studied, bearing in mind that the idea can be 

extended to non-autonomous systems. 

 



Perturbed Systems Ordinary Differential Equations and Applications II    113 

 

Stability of homogeneous differential equations is a prototype of stability theory [1] 

and sometimes such a differential equation may contain a perturbation function. We 

intend to study stability and its characterization for linear perturbed systems. Jack 

[11] provided a bundle of theorems for this purpose, especially for non-autonomous 

systems. 

Consider the linear autonomous system:   

                                              (7.1) 

where is a square matrix and is the perturbation function, which is 

continuous, such that: 

, 

for some positive constant . We assert that the system is asymptotically stable [1, 

12]. 

Using the above condition, it is not difficult to show that: 

,                              (7.2)
 

therefore, given , we can find such that  

i.e.
,
 

for , where for and . Uniform 

stability is implied from the definition. We note that  as thus 

asymptotic stability follows and hence the proof. 

Remark 7.1 

The above result holds for non-autonomous systems (Jack [11], pp.87). 
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Theorem 7.1 

Let be a linear perturbed system where

satisfy conditions that allow solutions to exist and be uniquely determined in a 

given interval. Suppose also that degenerates such that: 

                                      (7.3)                                                                                                   

and  for some constant . 

Then the linear perturbed system is uniformly stable. 

Proof 

The proof is by a variation of constant parameter and estimation as follows:   

 

 

Let  ,thus by Gronwall’s inequality [1, 9, 10] we have 

 

That is: 

                                (7.4) 
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CHAPTER 8 

Stability Property of Some Neural Firing and Avian 

Influenza Infection Models 

Abstract: The stability property of equilibrium points of some neural network models 

is investigated. We have introduced different types of Lyapunov functions to carry 

out the investigation. The models considered are: Grossberg, Hopfield, Fitz-Nagomo 

and Fitzhugh models, respectively. The equilibrium points and stability conditions are 

obtained for the Avian influenza infection. The conditions for bio economic 

equilibrium points for the fish model were also obtained. 

Keywords: Bio-economic equilibrium point, Equilibrium points, Fish model, Fitz-

Nagomo models, Fitzhugh model, Grossberg, Hopfield, Lyapunov functions, 

Neural network models, Stability property. 

INTRODUCTION 

Neural network is primarily concerned with modelling the activity of the brain, its 

behavioral processes, and the application of these models to computers and related 

technologies [1,4,6,7,10]. The Areas where neural network find useful applications 

are neuroscience, artificial intelligence, vision and image processing, speech and 

language understanding, pattern recognition, parallel distributed processing, and so 

on (Gene et al. [4]; Hopfield [8]). 

An Artificial neural network (ANN) is an information or signal processing entity 

containing elements, called artificial neurons, or sometimes referred to as nodes. 

The neurons are interconnected by direct links called connectives, which perform 

parallel distributed processing (PDP) in order to solve the desired biological or 

computational task [5,7,9, 20]. 

Artificial neural networks can be used effectively to solve many scientific and 

engineering problems that are formulated mainly as variational or optimization 

problems derived from the learning equation with or without a teacher [4]. 

This  is a richly connected network of simple computational elements modelled as 

biological processes. Their origin can be traced back to the late nineteenth and early 

twentieth centuries when psychologists tried to identify the neural basis of 

intelligence [4]. 
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MacCulloch initiated research on the central nervous system in 1943 and a neural 

network model which was published with Walter Pitts. In 1949, Donald Hebb 

proposed a model for learning in neural network and Dean Endermonds in 1951 

proposed a similar model but on electromechanical learning machine which 

incorporated the ideas in a motor-driven memory with forty control knobs Cichocki 

and Unbehaven [1]. 

The discipline Artificial Intelligence was introduced in 1956 at the Dartmouth 

Conference where Anderson James presented a paper based upon his development 

on brain state in a box (BSB) (Nicholas [9]). 

Grossberg developed a mathematical model in 1982, which encompassed a variety 

of neural network models as well as population biology and macro molecular 

evolution. 

In this chapter, we consider four models of neural network types, namely; 

Grossberg, Hopfield, Fitzhugh-Nagumo and Fitzhugh models. Equilibrium points 

of the models are determined and consequently stability properties of systems 

investigated using a series of Lyapunov functions which we introduced. The 

fundamental problem we encountered was how to obtain suitable Lyapunov 

functions for the models. The reason why we opted for the stability of the models 

is that it offers a precondition for optimization of the models [11-15]. 

Preliminary Definitions 

Neuron 

This is the basic unit of the central nervous system (CNS) that sends signals through 

the neural network. 

Synapse 

This is the connection junction between two neurons. 

Neural networks are a class of models inspired by the neural circuitry in human and 

animal brains. They occupy a spectrum, ranging from artificial neural 

networks (ANNs) to biological neural networks (BNNs). 

http://en.wikipedia.org/wiki/Artificial_neural_network
http://en.wikipedia.org/wiki/Artificial_neural_network
http://en.wikipedia.org/wiki/Biological_neural_network
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MACCULLOCH -PITT Model 

The first real model of a nerve cell that could be simulated on a computer was 

developed by McCulloch and Pitts (Fig. 8.1). 

 

 

(Fig. 8.1) contd.....  
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CHAPTER 9 

Numerical Solutions to Ordinary Differential 

Equations and Applications Using Maple  

Abstract: Many complex nonlinear problems in science, economics, and engineering 

require computers to solve and simulate mathematical models describing them. Hence, it 

becomes extremely necessary to apply numerical methods to solve such problems.  In 

this chapter, numerical methods for solving initial value problems are considered. Taylor 

series, Euler, Modified Euler’s, Runge-Kutta, Adams-Bash forth-Moulton and Milne 

numerical methods are considered together with some Maple examples given. Numerical 

simulations are designed and implemented using Maple software for HIV/AIDS, 

Fitzhugh, and Fitzhugh-Nagumo, sickle cell anemia, zooplankton-fish, Gompertz tumor 

and neural firing models. The Explore facility in Maple 2022 is utilized to design sliders 

for investigating the behaviors of solutions of some ordinary differential equations 

subject to parameter change. 

Keywords: Codes, Convergence, Fitzhugh, Fish models, Fitzhugh-Nagumo, 

Maple solution, Numerical, HIV/AIDS, Solutions, Stability, Sickle cell anemia, 

Tumor, Zooplankton. 

INTRODUCTION 

In recent times, there are several emerging complex nonlinear ordinary differential 

equations (ODEs) in science and technology. The needs for computer-based 

solution to those ODEs problems are becoming increasingly important. 

Applications of numerical methods and development of numerical simulations are 

everywhere present in most research works in engineering, economics and life 

science these days [2,3,4,14]. The reason d’état is not far from the fact that the 

analytic or exact solutions to most non-linear ordinary differential equations cannot 

be easily being found even with the applications of symbolic programing.  

It is interesting to note that, sometimes, the symbolic programs may take several 

hours, or even days to generate symbolic solutions to a problem. The computer 

printout of the solution may run into several pages of paper and the result may 

appear to be meaningless at a glance [12]. Hence the use of numerical methods in 

solving applied problems in science, economics and engineering is becoming 

popular in the recent times [3, 4, 5,8,12, 13]. 
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We note that, in the literature, much research has accumulated on numerical 

methods for solving ordinary differential equations. There are many physical 

systems with the governing equations, initial and boundary conditions, whose 

solution cannot be obtained with even some mathematical software in the market; 

yet the solution to the ODEs exist in some given interval. In this situation, numerical 

methods are often used to find the approximate solutions to the pig-headed ODE 

problems and numerical simulation now constitute the core of most researches on 

the behavior of the solution to the problems subject to parameter changes [2, 8, 12, 

13]. 

Furthermore, the knowledge of numerical solution is very important to solve the 

differential equations [8]. We need efficient numerical methods in order to form 

algorithms for solving the problems. The algorithms must have desirable 

computation properties before being coded into computer programs. The programs 

are then implemented using higher level programming language to find the 

numerical solution to the differential equations. Maple software platform has given 

us the opportunity to gain understanding of the behavior of systems and discover 

laws underpinning them. It provides us with platforms to teach students how to find 

numerical solutions to ODEs and to develop numerical simulation to models [2, 5, 

6, 9]. 

The numerical methods that we will consider are the Taylor series, Euler, Modified 

Euler’s, Runge- Kutta, Adams-Bashforth, Adams-Bashforth-Moulton and Milne 

methods. It is worthy to note that each of these methods has some kind of 

complexities associated with it. These include: computer run time (time taken to 

run the program), computer memory (space occupied by the data generated from 

the numerical method); how fast the approximated solution tends to the analytic 

solution (convergence issue). The issue of consistency and stability of the methods 

are also paramount when considering numerical solutions [5,7,8,14]. Each of these 

computational properties will be discussed in our subsequent study on numerical 

solutions to ODEs. 

Furthermore, in implementing numerical methods, a price must be paid which is 

associated with complexities in the numerical algorithms employed together with 

structuring programing language unitized to implement the numerical methods on 

the computer. 

Finally, we will like to emphasize that numeric analysts would be interested in 

studying the numerical algorithms and the computational analytic concepts 

mentioned above, whereas other Scientists and Engineers will only be concerned 
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with applying numerical methods to solve problems for as long as the solution 

generated from the numerical methods are accurate and satisfied the required 

computational properties. 

Numerical Solution to Initial Value Problems 

Let us consider an initial value problem (IVP): 


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                                           (9.1)

 

where ))(,( txtf is a continuous function in the closed interval ],[ ba and 

differentiable in the open interval ),( ba .Then by fundamental theorem of calculus 

the solution to the equation (9.1) is: 
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Suppose the interval ],[ ba is partition into sub-intervals

),),...[,[),,[),,[ 1122110 kk xxxxxxxx   such that: hxxxxxx kkk  1210 ,...0 , 

where h is constant. 

We can find the Taylor series solution to the equation (9.1) as follows:  
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where )(),....,(),( 0

)()(

00

/
0

/

00 xyyxyyxyy nn  .Therefore, the approximate 

solution to the differential equations can be generally be written as

nnnn yxyxy  )()( , where ny is the approximate solution to )(xy (exact 

solution) and n  is the error of approximation. 

Later on, we will discover that numerical methods differ by the value of )(xy and 

the corresponding error value ,...2,1,  nn  
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APPENDIX A 

Brief Highlights about Maple Software 

Abstract: Many real-life problems can be solved through modeling and simulation and Maple 

2022 is the world-leading software used by mathematicians, physicists, economists, engineers, 

and educators for the problem solving task. The power of Maple and the MapleSim software 

are exploited in this section. We present the starting process with the software and demonstrate 

the application of the software via some selected problems. 

Keywords: 2D, 3D plots, Animation, C Codes, Hybrid computations, Maple, MapleSim, 

MapleSim, Monte Carlo Simulation, Numerical, Symbolic, Simulation. 

A.1. POWER OF MAPLE 

Maple has the most powerful Math engine, and smart document interface, along 

with Maple add-in and grid computing facilities for symbolic, numerical, and 

hybrid computation, sophisticated 2D, 3D plotting and animation, and document 

and word processing tools.  

Furthermore, Maple T.A (Test and Assessment) has an E-learning solution. Maple 

T A is an easy-to-use web-based system for creating tests and assignments and 

automatically assessing students’ responses and performance. It has Maple T.A. 

placement Test suite to deliver tests online which reduces the cost of administration 

and marking examinations using paper type.  

A.1.1 Maple Net  

 Maple Net: A facility that allows easy sharing of Maple documents, calculator 

and technical application. There is also MapleSim 2022 for the simulation of 

engineering and real-life processes. 

A.1.2 Calculus Kits  

 Calculus Kits are for students and teachers to interact with each other while 

solving mathematical problems.  

A.1.3 Users  

 Maple is software that can be used by mathematicians, physicists, engineers, 

chemists, social scientists and educators.  
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1.4 Maple Portal  

 Maple makes use of what is called Portals. The Maple Portal is designed as a 

starting place for any Maple user. There are 3 types of portals in Maple that are 

related to our study in this textbook and these are:  

 Portal for Engineers: which contains tools used by Engineers in solving 

mathematical problems. Engineering packages contain a dynamical system 

toolbox, scientific constants, scientific error analysis, tolerance and units.  

 Portal for Students: Student packages are available for the following topics: Pre-

calculus, calculus, vector calculus, differential equations, linear Algebra, and 

multivariate calculus.  

 Portal for Math Educators: This portal contains information and tools for 

education, assessment, Maple Test and assessment of students. This portal 

contains student packages that allow instructors to deliver the course contents 

effectively; give students insight into understanding basic mathematical 

concepts and enhance their problem-solving practical skills. There is also a 

survival kit to enhance students’ mathematical mastery of topics in the portal 

for students  

A.1.5 Help Resources and Maple Tour 

Maple also has Help Resources and Maple Tour to give tutorials on how to use the 

resources in Maple and Help system to help the users out of perceived problems 

and many examples on how to use maple resources. There is also a Quick reference 

card. This card gives vital information on how to make use of resources like the 

type of modes for creating documents in Maple. It also gives information on Toggle 

Math/Text entry mode, how to evaluate math expressions and display results in line; 

common operations available in the Maple in both document and worksheet Modes; 

2-D math editing operations, keyboard shortcuts, and operations plotting and 

animation. 

A.1.6 User Manuals and Web links 

User Manuals: This manual gives comprehensive information about Maple, 

tutorials, and examples on Maple. The manual contains how to get started with 

maple toolboxes, the user manual and the programming guild.  

Web links: This is the hyperlink to Maple soft Company, which is the developer 

and marketer of Maple software. The links provide information and registration of 
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the company, and show how to register and take part on webinars, an online seminar 

series. It also provides information on how to get online resources on Maple. 

A.2 Getting Started 

A.2.1 Maple Tutorial 

Maple tutorial helps to get started with the software, learn about the tools available 

in Maple, and lead you through a series of problems. It guides you on how to enter 

simple expression, functions, matrices, complex numbers, and evaluate expression 

and plotting functions.  

Maple has so many interesting modelling and simulation facilities as we are not 

going to make a discussion on them but we will demonstrate their applications in 

Maple Examples. 

Examples on Graphs and Animations  

Example A1  

To plot the graph of sine function in the worksheet mode, type in the command:  

> Plot (sin (2*x),x =-Pi..Pi, thickness=2);  
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>  

 

>  
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>

 

 

>  

>  
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>  

>  

>  

We can extend the plot to 3D using document mode: type in the following two 

dimension function w=w(x, y) and highlight the equation, right click the 3D plot, 

we have: 

 

>  

>  

>  

>  

In the document mode, type the equation and highlight it and right click to select 

the 2D plot, then we have the plot: 
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>           

>We can also replicate the above plot using worksheet mode by typing in the 

equation and right- click and select 3D plot. You can also use the plot builder to 

have a variety of 3D-plots and even animate the plots too.  

 

>w=3x^2  
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>        

>       

Using worksheet mode, you can animate a plot using the command with (plots) 

together with animate3d. For example, type in: 

>  
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Highlight the 3D-plot and select the type of animation, whether short-time 

animation or continuous one. In Maple software, the memory can be cleared using 

‘restart’. 

 

 

 

 

Maple contains several facilities for computation using Linear Algebra. Type in 

with (LineraAlgebra) with ‘semicolon’ to display the linear algebra facilities in the 

maple software. We can suppress this by using colon as usual. 

>  

In the worksheet mode, a vector and a matrix can be typed in as follows: 

x=Vector ([1, 0,-2, 3); 
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>A:=Matrix([[1, 2, 0, 3], [0, 0, -1, 4], [0, 0, -3, 2], [2, 1, 0, 2]]); 

 

The element on the first row fourth colon can be displayed by typing in:  

>  

3 

>  

-3 

A matrix A can be multiplied by itself using the code: 

>  

 

Matrix A can be post multiplied using the vector x as follows: 

> A.x 

 

B: =Matrix ([[1,2],[5,7],[3,5], [0,3]]); 
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> A.B; 

 

> B.A; 

Error, (in LinearAlgebra:-Multiply) first matrix column dimension (2) <> second 

matrix row dimension (4) 

>  

 

> y := Vector(8, h); 

 

>  

> H:= Matrix(5,5, (i,j) -> 1/(i+j-1)); 
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>  

 

>  

>  

 

>  

 

>  

>  
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>z:=LinearSolve(A,d); 

Warning, inserted missing semicolon at end of statement 

 

> E:=IdentityMatrix(4); 

Warning, inserted missing semicolon at end of statement 

 

>  

-30 

>  

4 
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>  

 

>N:=f  ->sqrt(%(f,f)); 

 

>  

>  

 

>  

 

> plot({f(x),g(x)},x = 0 .. 1,thickness = 6);  
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>>>  

 

>  

 

>  

 

>  

 

>  

> with(plottools): 

> with(plots): 

> c1:= circle([1,1], 1,color=blue): 

> c2:=circle([1/2,1], 1/2,color=red): 

> display([c1,c2); 
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>  
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>  

>  

>  

>  

>  

>  

>  

>  

>  

> with(plottools): 

> with(plots): 

> c1 := ellipse([1,1], 1, color=blue): 

> c2 := circle([1/2,1], 1/2, color=red): 

> display(c1,c2); 

 

> c3:= ellipse([-1,1], 1,color=blue): 
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> c4:= circle([-1/2,1], 1/2,color=red): 

> with(plottools): 

> with(plots): 

> display(c1,c2,c3,c4); 

 

> c2:=circle([1/2,1], 1/2,color=red): 

> display(c1,c2); 
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>  

>  

>  

 

> 
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> 

 

> 

 

 

>  

> with(plots,[pareto]): 

>pdata:= ‘Engine 1’=327, 

`Engine 2`= 240, 

`Engine 3`=176, 

`Wire 1`=105, 
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`Wire 2`=43, 

`Wire 3`=36, 

Oil=33, 

  Coils=90, 

`Gear Box`=61, 

`Steam line`=50, 

Others=166]: 

>Fdata:=map(rhs,Pdata): 

> Lab:=map(lhs,Pdata): 

> >  

 

> Fdata_norm:=map((x,s) -> 100*x/s, Fdata, `+`(op(Fdata)) ): 
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> pareto(Fdata_norm, tags=Lab, misc=Others, title=`Percentages of 

problems`); 

 

>  

>  

>  
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>  

 

>  

 

>  

>  

>  

>  



258    Ordinary Differential Equations and Applications II Benjamin Oyediran Oyelami 

 

>  

 

>JuliaSet:= proc(a,b) 

 local z1, z2, z1s, z2s,m; 

 (z1, z2): = (a,b): 

 z1s:= z1^2: 

 z2s: = z2^2; 
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 for m to 30 while z1s+z2s < 4 do 

   (z1, z2):= (z1s-z2s, 2*z1*z2) + (0, 0.75); 

   z1s:=z1^2; 

   z2s:= z2^2; 

 end do; 

m; 

end proc:    

> 
 

 

>  
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>  

 

>  
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>  
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>  

 

N-order Nuclear Reactor Process 

 

>  

>  

 

>                           

 

>  
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>  

Example for fitting experiments 

 

>  

>  

>  

>  

>  

 

>  

>  

 

>  
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>  

 

Consider now an experiment where quantities ,  and  are quantities influencing 

a quantity  according to an approximate relationship 

 

with unknown parameters , , and . Six data points are given by the following 

matrix, with respective columns for , , , and . 

> 
 

 

>  

 

>  

 

>  
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APPENDIX B 

Introduction to MapleSim Software 

Abstract: MapleSim is a modelling environment for creating and simulating complex 

multi-domain physical systems. It allows building component diagrams that represent 

physical systems in the graphical form. MapleSim automatically generates model 

equations from the component diagrams using symbolic and numerical approaches 

and runs very highly accurate simulations. 

MapleSim modelling environment combines components from different engineering 

domains such as mechanical, electrical, and multi-body for building and exploring 

realistic designs and for studying the system level. 

Keywords: Maple, MapleSim, Monte Carlo Simulation, Numerical, Symbolic, Simulation 

INTERACTIONS 

In MapleSim environment 

 Models’ system level can be easily assessed to demonstrate concepts such as 

parameter optimization, sensitivity analyses, and interactions. 

 Mathematical equations can be defined for new components from the first 

principle. 

 Simulation can be carried out to investigate a much larger result of conditions 

that is possible. By testing with hardware alone, with no risk of damage to the 

equipment and for less cost. 

 Allows export from MapleSim to C code, simulation, Labview, and other tools 

where it can be incorporated with a physical prototype. 

Features in MapleSim 

 MapleSim have facilities for visualization in 3D and animation of multibody 

systems, full playback, and cameral control in 3D visualization. 

 Interface and modelling: It contains drag-and-drop block diagrams in modelling 

environment, modelling diagrams, and 3-D model construction of multibody 

systems, data import, and export. 

 Block Library: MapleSim contains both physical component and signal-flow 

blocks. The physical component blocks have different formalities for many 

domains. 
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 Analysis and documentation: extract, view, and manipulation of the system 

equations for a model l, and parameter optimization. Simulation and parameter 

swaps including related files in a MapleSim model for easy documentation 

management and sharing. 

Linear, nonlinear, continuous and discrete, SISO, MIMOS and hybrid systems 

parameter set managing and deployment to popular platforms from Mathword. 

MapleSim Connect can connect with Simulink. 

B1. Design of Simulation using the MapleSim 

B1.1 Code Generation 

Code generation can handle all systems modeled in MapleSim, including hybrid 

systems with defined signal input (RealInput) and signal output (RealOutput) ports 

(MapleSim). 

The source code in MapleSim is designed to interface with Maple, in the sample 

code; all inputs are assigned the value of 0. For more information about the 

available Code Generation command, see the GetCompiledProc help topic in 

MapleSim. 

C Code Generation 

For C code generation, select the attachment of the generation of code from the 

MapleSim. 

Step 1: Subsystem Selection  

Click the button: 

 

Step 2: Inputs/Outputs and Parameter Management  

Inputs: 

 
Input Variables Change Row

1
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Outputs: 

 

 

 

Parameters: 

Click: 

 

Then, the parameters used in the model would be generated as:  

 

The C code for the modeling program can be generated using various solvers by 

selecting optimization optional and the max mean projection iteration 

 

 

Output Variables Export Change Row

1

2

3

4

`Main.'output 1'.T`(t) "X"

`Main.output2.T`(t) "X"

`Main.output3.T`(t) "X"

Add an additional output port for subsystem state variables

Parameters Value Export Change Row

1

2

3

4

5

6

"X"

HC1_C 15. "X"

HC2_C 15. "X"

HC3_C 15. "X"

TC1_G 0.1e2 "X"

TC2_G 8. "X"
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Step 3: C Code Generation Options  

Solver Options: 

   

Optimization Options: 

 

Constraint Handling Options: 

   

   

  

Event Handling Options: 

   

   

Baumgarte Constraint Stabilization: 

 

   

    

 

 

Fixed step solver:

Level of code optimization (0=None, 3=Full):

Maximum number of projection iterations: 3

Error tolerance: 0.1e-4

Apply projection during event iterations

Maximum number of event iterations: 10

Width of event hysteresis band: 0.1e-9

Apply Baumgarte constraint stabilization Export Baumgarte parameters

10

Beta: 2
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Step 4: Generate C Code  

 

 

 

 

Click to generate the C code: 

 

Step 5: View C Code 

 

 

 

Target directory:

C:\Users\Prof B O Oyelami

C-File:

MsimModel

/***************************************************

 * Automatically generated by Maple.

 * Created On: Fri Jun 12 04:49:35 2015.

***************************************************/

#ifdef WMI_WINNT

#define EXP __declspec(dllexport)

#else

#ifdef X86_64_WINDOWS

#define EXP __declspec(dllexport)

#else

#define EXP

#endif

#endif

#include <stdlib.h>

#include <stdio.h>

#include <math.h>

#ifdef FROM_MAPLE

#include <mplshlib.h>

static MKernelVector kv;

#else

#ifdef WMI_WINNT

#define M_DECL __stdcall

#else

#define M_DECL
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 Monte Carlo Simulation   Author : Benjamin  O 

Oyelami    

Date:14 October 2022      

 

  

Model Description 

Monte Carlo simulation (MCS) can be made on a MapleSim model. To generate 

MCS, you define a random distribution for a parameter and you can run multiple 

simulations using this distribution. Note that the properties that are plotted are 

defined by the probes in the MapleSim model. 

Monte-Carlo Simulation 

To start, click Load System. 

 

Parameter Distribution 

 Select the parameter you want to vary, and then choose an appropriate distribution 

and distribution parameters.  

Parameter  

 

 

 

Nominal 

Value  

 

 

 

Distribution 

Choose the 

parameter a 

and b, the 

 

 

15
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uniform 

distribution as 

follows: 
 

a 

 

 

 

b 

 

 

 

 Monte-Carlo Simulation 

Enter the number of simulation runs and the number of bins in the simulation, and 

then click the Run Simulation button to create and display the simulation plots.  

Number of simulations run (including nominal value)  

To plot variation, in the boxes click: 

  for  

Click Run simulation for the given problem and 

number of bins and the probe plots are displayed 

above: 

 

 

 

Number of bins 

 

Note: The blue line corresponds to the nominal values. 

Data Analysis 

Specify a time value below (any float value between 0 and s), choose an output 

variable in the list, and then click Analyze Data. Statistics quantities will be 

displayed on a data set of points, with each point corresponding to one of the 

simulations, not including the nominal. More information on the quantities 

0

1

6

Plot variances in boxes

12

tf

5

���

���

�

���

���

���

���

�
��� ��� ��	 ��� ��
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displayed and plotted; see Statistics in the Maple Help. The data on which the 

quantities are computed and plotted are stored as a list of Matrices in the variable

. The first element corresponds to the nominal value (which is not used in the 

statistics). Select the desired sample of output variables and click analyze data and 

the statistics quantities displayed as follows: 

 

Sample Time 

 

 

 

 

 

Output Variable 
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Statistics Quantities  

 

 

Select the type of plot you desire and click on the example, 

Choose the Kernel/density plot and the plot displayed as 

follows: 

 

 

 

  

 

  

0.000005

Skewness            

-0.517357

Standard Deviation  

0.000002

Variance            

0.000000

Variation           

0.084149
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Save this worksheet in Maple and then save the msim file to which this worksheet 

is attached in MapleSim. 
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