MICROBIOLOGY FOR ICAR NET: A COMPREHENSIVE EXAM PREPARATION GUIDE

Sunita Devi Kumari Manorma Megha Sharma Subhash Chand

Bentham Books

Microbiology for ICAR NET: A Comprehensive Exam Preparation Guide

Authored by

Sunita Devi

Microbiology Section, Department of Basic Sciences College of Forestry Dr Yashwant Singh Parmar University of Horticulture and Forestry Nauni- Solan (Himachal Pradesh) India

Kumari Manorma

Microbiology Section, Department of Basic Sciences College of Forestry Dr Yashwant Singh Parmar University of Horticulture and Forestry Nauni- Solan (Himachal Pradesh) India

Megha Sharma

Microbiology Section, Department of Basic Sciences College of Forestry Dr Yashwant Singh Parmar University of Horticulture and Forestry Nauni- Solan (Himachal Pradesh) India

Subhash Chand

Microbiology Section, Department of Basic Sciences College of Forestry Dr Yashwant Singh Parmar University of Horticulture and Forestry Nauni- Solan (Himachal Pradesh) India

&

Oketqdkqnqi { 'hqt'kECT'PGV<C'Eqortgjgpuksg'Gzco'Rtgrctcvkqp'Iwkfg''

Authors: Sunita Devi, Kumari Manorma, Megha Sharma and Subhash Chand

ISBN (Online): 978-981-5305-93-7

ISBN (Print): 978-981-5305-94-4

ISBN (Paperback): 978-981-5305-95-1

© 2024, Bentham Books imprint.

Published by Bentham Science Publishers Pte. Ltd. Singapore. All Rights Reserved.

First published in 2024.

BENTHAM SCIENCE PUBLISHERS LTD.

End User License Agreement (for non-institutional, personal use)

This is an agreement between you and Bentham Science Publishers Ltd. Please read this License Agreement carefully before using the ebook/echapter/ejournal (**"Work"**). Your use of the Work constitutes your agreement to the terms and conditions set forth in this License Agreement. If you do not agree to these terms and conditions then you should not use the Work.

Bentham Science Publishers agrees to grant you a non-exclusive, non-transferable limited license to use the Work subject to and in accordance with the following terms and conditions. This License Agreement is for non-library, personal use only. For a library / institutional / multi user license in respect of the Work, please contact: permission@benthamscience.net.

Usage Rules:

- 1. All rights reserved: The Work is the subject of copyright and Bentham Science Publishers either owns the Work (and the copyright in it) or is licensed to distribute the Work. You shall not copy, reproduce, modify, remove, delete, augment, add to, publish, transmit, sell, resell, create derivative works from, or in any way exploit the Work or make the Work available for others to do any of the same, in any form or by any means, in whole or in part, in each case without the prior written permission of Bentham Science Publishers, unless stated otherwise in this License Agreement.
- 2. You may download a copy of the Work on one occasion to one personal computer (including tablet, laptop, desktop, or other such devices). You may make one back-up copy of the Work to avoid losing it.
- 3. The unauthorised use or distribution of copyrighted or other proprietary content is illegal and could subject you to liability for substantial money damages. You will be liable for any damage resulting from your misuse of the Work or any violation of this License Agreement, including any infringement by you of copyrights or proprietary rights.

Disclaimer:

Bentham Science Publishers does not guarantee that the information in the Work is error-free, or warrant that it will meet your requirements or that access to the Work will be uninterrupted or error-free. The Work is provided "as is" without warranty of any kind, either express or implied or statutory, including, without limitation, implied warranties of merchantability and fitness for a particular purpose. The entire risk as to the results and performance of the Work is assumed by you. No responsibility is assumed by Bentham Science Publishers, its staff, editors and/or authors for any injury and/or damage to persons or property as a matter of products liability, negligence or otherwise, or from any use or operation of any methods, products instruction, advertisements or ideas contained in the Work.

Limitation of Liability:

In no event will Bentham Science Publishers, its staff, editors and/or authors, be liable for any damages, including, without limitation, special, incidental and/or consequential damages and/or damages for lost data and/or profits arising out of (whether directly or indirectly) the use or inability to use the Work. The entire liability of Bentham Science Publishers shall be limited to the amount actually paid by you for the Work.

General:

^{1.} Any dispute or claim arising out of or in connection with this License Agreement or the Work (including non-contractual disputes or claims) will be governed by and construed in accordance with the laws of Singapore. Each party agrees that the courts of the state of Singapore shall have exclusive jurisdiction to settle any dispute or claim arising out of or in connection with this License Agreement or the Work (including non-contractual disputes or claims).

^{2.} Your rights under this License Agreement will automatically terminate without notice and without the

need for a court order if at any point you breach any terms of this License Agreement. In no event will any delay or failure by Bentham Science Publishers in enforcing your compliance with this License Agreement constitute a waiver of any of its rights.

3. You acknowledge that you have read this License Agreement, and agree to be bound by its terms and conditions. To the extent that any other terms and conditions presented on any website of Bentham Science Publishers conflict with, or are inconsistent with, the terms and conditions set out in this License Agreement, you acknowledge that the terms and conditions set out in this License Agreement shall prevail.

Bentham Science Publishers Pte. Ltd. 80 Robinson Road #02-00 Singapore 068898 Singapore Email: subscriptions@benthamscience.net

CONTENTS	
FOREWORD	i
PREFACE	iii
CHAPTER 1 FROM PAST TO PRESENT: THE SCOPE OF MICROBIOLOGY	1
A. Multiple Choice Questions	1
B. Fill in the Blanks Questions	12
C. True and False Questions	14
ANSWER KEY (CHAPTER -1)	15
A. Multiple Choice Questions	15
B. Fill in the Blanks Questions	16
C. True and False Questions	16
CHAPTER 2 PROKARYOTES, ARCHAEBACTERIA, AND EUKARYOTES	17
A. Multiple Choice Questions	17
B. Fill in the Blanks Ouestions	42
C. True and False Ouestions	45
ANSWER KEY (CHAPTER -2)	47
A. Multiple Choice Questions	47
B. Fill in the Blanks Questions	48
C. True and False Questions	49
CHAPTER 3 SECOND ORDER DIFFERENTIAL EQUATIONS AND APPLICATIONS TO	
SOME MODELS.	50
A. Multiple Choice Questions	50
B. Fill in the Blanks Questions	65
C. True and False Questions	66
ANSWER KEY (CHAPTER -3)	69
A. Multiple Choice Questions	69
B. Fill in the Blanks Questions	70
C. True and False Questions	70
CHAPTER 4 IMPORTANT GROUPS OF PROKARYOTES	71
A. Multiple Choice Questions	71
B. Fill in the Blanks Questions	92
C. True and False Questions	94
ANSWER KEY (CHAPTER -4)	95
A. Multiple Choice Questions	95
B. Fill in the Blanks Questions	96
C. True and False Questions	96
CHAPTER 5 ROOTS AND MICROBES: THE INTERPLAY IN SOIL MICROBIOLOGY	97
A. Multiple Choice Questions	97
B. Fill in the Blanks Questions	133
C. True and False Questions	137
ANSWER KEY (CHAPTER -5)	140
A. Multiple Choice Questions	140
B. Fill in the Blanks Questions	142
C. True and False Questions	143
CHAPTER 6 ENVIRONMENTAL MICROBIOLOGY AND BASIC MICROBIOLOGICAL	
TECHNIQUES	144
A. Multiple Choice Questions	144
B. Fill in the Blanks Questions	170
C. True and False Questions	174
ANSWER KEY (CHAPTER -6)	178
A. Multiple Choice Questions	178
B. Fill in the Blanks Questions	179

C. True and False Questions	180
CHAPTER 7 BIOTECHNOLOGY OF MICROBES: PROGRESS AND PROSPECTS	181
A. Multiple Choice Questions	181
B. Fill in the Blanks Questions	206
C. True and False Questions	211
ANSWER KEY (CHAPTER -7)	215
A. Multiple Choice Questions	215
B. Fill in the Blanks Questions	216
C. True and False Questions	218
CHAPTER 8 ENVIRONMENTAL MICROBIOLOGY AND BASIC MICROBIOLOGICAL	
TECHNIQUES	219
A. Multiple Choice Questions	219
B. Fill in the Blanks Questions	250
C. True and False Questions	254
ANSWER KEY (CHAPTER -8)	259
A. Multiple Choice Questions	259
B. Fill in the Blanks Questions	261
C. True and False Questions	262
BIBLIOGRAPHY	263

FOREWORD

The field of Microbiology is a rapidly evolving discipline, demanding precision, dedication, and expert guidance. It is with great pleasure that I write the Foreword for "Microbiology for ICAR NET: A Comprehensive Exam Preparation Guide," authored by Dr. Sunita Devi, Assistant Professor (Microbiology) in the Department of Basic Sciences, along with her team members Dr. Kumari Manorma, Ms. Megha Sharma, and Mr. Subhash Chand. This book is an invaluable resource for students preparing for the ICAR NET exam, offering a thorough and forward-looking approach to mastering microbiology.

This guide covers the entire ICAR NET syllabus across eight meticulously structured chapters: "From Past to Present: The Scope of Microbiology," "Prokaryotes, Archaebacteria, and Eukaryotes," "The Art and Science of Microscopy," "Important Groups of Prokaryotes," "Roots and Microbes: The Interplay in Soil Microbiology," "Environmental Microbiology and Basic Microbiological Techniques," "Biotechnology of Microbes: Progress and Prospects," and "Microbial Physiology and Ecology."

More than just a roadmap to success, this book facilitates a deep understanding of microbiological principles. It employs a thoughtful mix of multiple-choice questions, true/false statements, and fill-in-the-blank exercises to transcend mere fact-recollection and foster critical thinking skills. The detailed answer key ensures that learners are thoroughly prepared and confident in their knowledge.

"Microbiology for ICAR NET: A Comprehensive Exam Preparation Guide" is designed to support students as they navigate the complex terrain of microbial science. It equips them with the necessary tools to excel in their examinations and future endeavors.

Embark on this transformative journey with "Microbiology for ICAR NET: A Comprehensive Exam Preparation Guide." Let the pages within be your steadfast companions as you explore the intricate landscapes of microbial science. May this resource empower you to overcome challenges, deepen your understanding, and ultimately, achieve excellence in your endeavors.

I extend my heartfelt congratulations and best wishes to the authors for their exemplary work in creating this comprehensive guide. Their dedication and

expertise are evident in every page, and I am confident that this book will be an invaluable asset to students and educators alike.

Dr. S. S. Kanwar

Retired Professor & Head (Microbiology)-cum-ICAR Professor Emeritus CSK HPKV Palampur, Himachal Pradesh-176062, India

ü

PREFACE

As we delve into the pages of "Microbiology for ICAR NET: A Comprehensive Exam Preparation Guide", I am delighted to introduce a comprehensive guide meticulously crafted to meet the unique needs of students preparing for the ICAR NET exam in microbiology. This preface serves as an invitation into the realm of microbiological exploration, where the boundaries between learning and application blur, and understanding becomes the cornerstone of success.

This book emerges from a shared passion for microbiology and a commitment to providing students with more than just a preparatory guide. With each chapter, we aim to foster a deep appreciation for the diversity and complexity of microbial life. The strategic arrangement of multiple-choice questions, true/false questions, and fill-in-the-blank exercises serves not only to reinforce foundational knowledge but also to ignite curiosity and critical thinking.

The detailed answer key included in this guide is not merely a set of solutions but a companion that invites you to embark on a journey of discovery. It is our hope that this book will not only assist you in acing the ICAR NET exam but also inspire a lifelong love for the fascinating world of microbiology.

May "Microbiology Mastery" be your guide, mentor, and confidant as you navigate the challenges and triumphs of your academic journey. Happy learning!.

Sunita Devi

Microbiology Section, Department of Basic Sciences College of Forestry Dr Yashwant Singh Parmar University of Horticulture and Forestry Nauni- Solan (Himachal Pradesh) India

Kumari Manorma

Microbiology Section, Department of Basic Sciences College of Forestry Dr Yashwant Singh Parmar University of Horticulture and Forestry Nauni- Solan (Himachal Pradesh) India

Megha Sharma

Microbiology Section, Department of Basic Sciences College of Forestry Dr Yashwant Singh Parmar University of Horticulture and Forestry Nauni- Solan (Himachal Pradesh) India

&

Subhash Chand

Microbiology Section, Department of Basic Sciences College of Forestry Dr Yashwant Singh Parmar University of Horticulture and Forestry Nauni- Solan (Himachal Pradesh) India

CHAPTER 1

From Past to Present: The Scope of Microbiology

A. Multiple Choice Questions

1.	Who coined the term "microbe"?			
(A)	Louis Pasteur	(B)	C.E. Sedillot	
(C)	Robert Koch	(D)	Antony Van Leeuwenhoek	
2.	Who is credited with originating t	he ter	m "animalcules"?	
(A)	Antony V. Leeuwenhoek	(B)	Louis Pasteur	
(C)	Francesco Redi	(D)	Lazzaro Spallanzani	
3.	was the first scientist to dis	sprove	the theory of spontaneous generation.	
(A)	John Tyndall	(B)	Francesco Redi	
(C)	Robert Hooke	(D)	Louise Pasteur	
4.	A final blow to spontaneous gener	ation	was given by:	
(A)	Louis Pasteur and Ferdinand Cohn	(B)	Robert Koch and Joseph Lister	
(C)	Francesco Redi and Louis Pasteur	(D)	John Tyndall and Ferdinand Cohn	
5.	Who is credited with the invention advancements in microbiology?	on of	the microscope that allowed for significant	
(A)	Louis Pasteur	(B)	Johannes Gutenberg	
(C)	Antonie van Leeuwenhoek	(D)	Zacharias Janssen	
6.	Who pioneered the technique of obtaining pure bacterial cultures through serial dilutions in a liquid medium for the first time?			
(A)	Robert Koch	(B)	Joseph Lister	

Devi et al.

(C)	Louis Pasteur	(D)	None of the above		
7.	Who introduced the terms aerobic and anaerobic fermentation?				
(A)	Louis Pasteur	(B)	C.J. Davaine		
(C)	Robert Koch	(D)	Joseph Lister		
8.	Who is attributed with coining the	term	"antibiotic"?		
(A)	Alexander Fleming	(B)	Joseph Lister		
(C)	Domagk	(D)	Selman Waksman		
9.	Who is often referred to as the "Fa	ather	of Soil Microbiology''?		
(A)	Ivanowski	(B)	Pasteur		
(C)	Beijerinck	(D)	Sergei Winogradsky		
10.	Who is credited with the introduct	tion of	the term "bacterium"?		
(A)	Hooke	(B)	Ehrenberg		
(B)	Pasteur	(D)	Leeuwenhoek		
11.	Who is credited with pioneering th	ne con	cept of biological nitrogen fixation?		
(A)	Martinus Beijerinck	(B)	Winogradsky		
(C)	Ivanowski	(D)	None of the above		
12.	Who independently validated tha anthrax?	t Baci	<i>Illus anthracis</i> was the agent responsible for		
(A)	Louis Pasteur	(B)	John Needham		
(C)	Joseph Lister	(D)	Robert Koch		
13.	Which genus was acknowledged as the first to include aerobic, free-living nitrogen- fixing bacteria?				
(A)	Arthrobacter	(B)	Azotobacter		
(C)	Pseudomonas	(D)	Bacillus		

The Scope of Microbiology

Microbiology for ICAR NET 3

14.	Who provided the evidence that the Great Potato Blight of Ireland was caused by a water mold?			
(A)	de Bary in 1853	(B)	A. Bassi in 1856	
(C)	M. Bigo in 1856	(D)	M.J. Berkeley in 1845	
15.	In 1688, who covered some jars of flies, while leaving other jars unco	f rotti overed	ng meat with gauze, preventing the entry of ?	
(A)	John Needham	(B)	Louis Pasteur	
(C)	Francesco Redi	(D)	Lazzaro Spallanzani	
16.	Which of the following is not a con	npone	nt of Robert Koch's pure culture technique?	
(A)	Immunization	(B)	Inoculation	
(C)	Incubation	(D)	Isolation	
17.	The causative agent responsible for	or Peb	rine disease in silkworms is a:	
(A)	Protozoan parasite	(B)	Fungal parasite	
(C)	Bacterial parasite	(D)	Viral parasite	
18.	Who provided the first indirect ev	idence	e for the germ theory of diseases?	
(A)	Robert Koch	(B)	Louis Pasteur	
(C)	Joseph Lister	(D)	Elie Metchinikoff	
19.	Who demonstrated the role of mic	croorg	anisms in putrefaction?	
(A)	Louis Pasteur	(B)	John Tyndall	
(C)	Robert Koch	(D)	Ferdinand Cohn	
20.	Who is considered the progenitor	of mo	dern immunology?	
(A)	Louis Pasteur	(B)	Jenner	
(C)	Robert Koch	(D)	Lister	
1		1	1	

Prokaryotes, Archaebacteria, and Eukaryotes

A. Multiple Choice Questions

1.	The distinction between prokaryotes and eukaryotes was firmly established by:				
(A)	Roger Stanier and CB Van Niel	(B)	Leeuwenhoek and R. Hooke		
(C)	Edouard Chatton and CB Van Niel	(D)	None of the above		
2.	A layer of diffuse, unorganized, easily removed material lying outside the cell wall is known as:				
(A)	S-layer	(B)	Slime Layer		
(C)	Capsule	(D)	Glycocalyx		
3.	What is the term used to describe the rigid, spiral shape of a bacterial or archaeal cell?				
(A)	Spirillum	(B)	Vibrios		
(C)	Diplococcus	(D)	Bacilli		
4.	Bacillus megaterium exemplifies a bacterium with shape.				
(A)	Spiral	(B)	Rod		
(C)	Comma	(D)	Cocci		
5.	Peptidoglycan, also referred to as, is the primary constituent or backbone of the bacterial cell wall.				
(A)	Murein	(B)	Muramic acid		
(C)	Both A and B	(D)	None		

Devi et al.

6.	Peptidoglycan is comprised of alternating units of N-acetylglucosamine and N acetylmuramic acid bonded together by				
(A)	β-1-4- linkages	(B)	β-1-6- linkages		
(C)	α-1-4- linkages	(D)	α-1-6- linkages		
7.	Mycoplasma are the	bac	teria.		
(A)	Largest	(B)	Longest		
(C)	Smallest	(D)	None		
8.	The fibers, composed of protein, that serve as scaffolding onto which specific adhesive molecules are attached are known as				
(A)	Pilins	(B)	Porins		
(B)	Flagellins	(D)	Adhesins		
9.	In prokaryotes, the hair-like outgrowths that attach to the surface of other bacterial cells are called				
(A)	Capsule	(B)	Flagella		
(C)	Pili	(D)	Glycocalyx		
10.	What remarkable "nanomaching	e'' do ma	my prokaryotes use for motility?		
(A)	Pili	(B)	Flagella		
(C)	Fimbriae	(D)	Capsules		
11.	What composes each flagellum in	n the bac	terial domain?		
(A)	Filament	(B)	Hook		
(C)	Basal body	(D)	All of above		
12.	What type of motility do cyanob	acteria a	nd myxobacteria exemplify?		
(A)	Axial motility	(B)	Gliding motility		
(C)	Twitching motility	(D)	Flagellar motility		

Prokayotes, Archaebacteria, and Eukaryotes

13.	What is the term for a molecule or structure produced by a pathogen that enables it to invade the immune system and potentially cause disease?				
(A)	Antigen	(B)	Virulence factor		
(C)	Antibiotic	(D)	Toxin		
14.	Which component of the bacterial flagellum is primarily responsible for anchoring it to the cell wall?				
(A)	Basal body	(B)	Hook		
(C)	Filament	(D)	Rings		
15.	What role does Lipid A, a major component of lipopolysaccharide, play in bacterial function?				
(A)	Stabilizes the outer membrane	(B)	Acts as an endotoxin		
(C)	Both A and B	(D)	None		
16.	According to the Fluid Mosaic Model, which component of the cell membrane forms a fluid matrix in which proteins are embedded?				
(A)	Cholesterol	(B)	Phospholipids		
(C)	Glycoproteins	(D)	Integral proteins		
17.	Teichoic acids are found in the cel	walls	of which type of bacteria?		
(A)	Gram-positive cell walls	(B)	Gram-negative cell walls		
(C)	Both A and B	(D)	Archaea		
18.	Which of the following metabolic pathways is commonly found in archaebacteria but not in eubacteria?				
(A)	Glycolysis	(B)	Methanogenesis		
(C)	Krebs cycle	(D)	Photosynthesis		
19.	The domain Eukarya contains all the following groups except				
(A)	Animal	(B)	Viruses		

The Art and Science of Microscopy

A. Multiple Choice Questions

1.	The refractive index of air is		
(A)	1.00	(B)	0.60
(C)	1.25	(D)	0.65
2.	All of the following are the compo	nents o	f a compound microscope except:
(A)	Binocular eyepiece	(B)	Condenser
(C)	Stage clips	(D)	Electron gun
3.	When the power of the ocular magnification will be:	lens is	10X and the objective lens is 40X, the
(A)	4000X	(B)	50X
(C)	4X	(D)	400X
4.	What type of microscope is particularly useful for studying microbial motility, the shape of living cells, and bacterial structures such as endospores and inclusion bodies?		
(A)	Electron microscope	(B)	Phase contrast microscope
(C)	Dark-field microscope	(D)	Fluorescent microscope
5.	What component of the light microscope regulates the amount of light entering the viewing area?		
(A)	Condenser	(B)	Both (A) and (B)
(C)	Diaphragm	(D)	Ocular lens

The Art and Science of Microscopy

Microbiology for ICAR NET 51

6.	Total magnification is the product of:		
(A)	Objective lens and eyepiece lens magnification	(B)	Condenser lens and objective lens magnification
(C)	Eyepiece lens and condenser lens magnification	(D)	Stage magnification and objective lens magnification
7.	What is the numerical aperture va	lue of	an oil immersion objective lens?
(A)	1.00	(B)	0.33
(C)	0.65	(D)	1.25
8.	Who is credited with building the	first el	ectron microscope?
(A)	Knoll and Ruska	(B)	Robert Hooke
(C)	Zacharias Janssen	(D)	Jacob and Monod
9.	What is the minimum distance at which our eyes can focus on nearby objects?		
(A)	11cm	(B)	25cm
(C)	50cm	(D)	70cm
10.	Which substance is typically used as a fixative in light microscopy before staining?		
(A)	Iodine	(B)	Safranin
(C)	Heat	(D)	All of these
11.	What is the name of the mordant of	employ	ved in Gram staining?
(A)	Crystal Violet	(B)	Ethyl alcohol
(C)	Iodine	(D)	Safranin
12.	Which component of the microsco	pe foci	uses light rays onto the specimen?
(A)	Ocular lens	(B)	Diaphragm
(C)	Objective lens	(D)	Condenser
I			

Devi et al.

13.	What is the maximum magnification power achievable with an electron microscope?				
(A)	1500X	(B)	15,000X		
(C)	400,000X	(D)	100,000X		
14.	What is the correct sequence of staining reagents used in Gram staining?				
(A)	Crystal violet-iodine-alcohol- safranin	(B)	Crystal violet-iodine-safranin-alcohol		
(C)	Crystal violet-alcohol-safranin- iodine	(D)	Crystal violet-alcohol-iodine-safranin		
15.	What electron-dense material is us	sed as a	a stain in negative staining?		
(A)	Phosphotungstic acid	(B)	Uranyl acetate		
(C)	Both (A) and (B)	(D)	None of these		
16.	What is the name of the red cationic dye used to counterstain bacteria in Gram staining?				
(A)	Safranin	(B)	Methylene blue		
(C)	Crystal Violet	(D)	Acidic Fuchsin		
17.	What is the metal used in electron microscopes?				
(A)	Platinum	(B)	Silver		
(C)	Tungsten	(D)	Copper		
18.	What role does iodine play in the Gram staining procedure?				
(A)	Increase the affinity between cell and dye	(B)	To form a complex with crystal violet		
(C)	Both (A) and (B)	(D)	None of the above		
19.	Which type of microscope is microorganisms in great detail?	typica	ally used to examine the surfaces of		
(A)	Scanning electron microscope	(B)	Transmission electron microscope		

Important Groups of Prokaryotes

A. Multiple Choice Questions

1.	Cyanobacteria differ from the other photosynthetic bacteria because they perform:				
(A)	Oxygenic photosynthesis	(B)	Anoxygenic photosynthesis		
(C)	Both A and B	(D)	None of these		
2.	Which type of photosystems do cyanobacteria possess?				
(A)	Photosystem I only	(B)	Photosystem II only		
(C)	Both Photosystems I and II	(D)	None of the above		
3.	What molecule serves as the photosynthesis?	elect	ron donor in cyanobacteria during		
(A)	CO ₂	(B)	Water		
(C)	Other reduced molecules	(D)	None of these		
4.	What kinds of photosystems do purple and green bacteria possess?				
(A)	Photosystem I only	(B)	Photosystem II only		
(C)	Both Photosystems I and II	(D)	None of these		
5.	What inorganic electron donors an	e used	by purple and green sulfur bacteria?		
(A)	Sulfur dioxide	(B)	Sulfuric acid		
(C)	Both (A) and (B)	(D)	Hydrogen sulphide		
6.	What is the major photosynthetic	pigmer	t of both sulfur and non-sulfur bacteria?		
(A)	Bacteriochlorophyll	(B)	Chlorophyll b		
(C)	Chlorophyll a	(D)	Phycoerythrin		
L			1		

Devi et al.

7.	In which habitats do cyanobacteria generally inhabit?			
(A)	Extreme cold environments	(B)	Deep ocean trenches	
(C)	Freshwater and marine environments	(D)	Arid desert regions	
8.	Which phylum do green sulfur bac	cteria b	elong to?	
(A)	Firmicutes	(B)	α-proteobacteria	
(C)	Chlorobi	(D)	Cyanobacteria	
9.	In green sulfur bacteria, where are	e photo	synthetic pigments primarily located?	
(A)	Thylakoid membrane	(B)	Cytoplasm	
(C)	Intracytoplasmic membrane	(D)	Chlorosomes	
10.	Which of the following is an example of green sulfur bacteria?			
(A)	Synechococcus elongatus	(B)	Bacillus subtilis	
(C)	Escherichia coli	(D)	Chlorobium tepidum	
11.	The members of the genus <i>Chloroj</i> bacteria?	flexus	belong to which group of photosynthetic	
(A)	Green nonsulfur bacteria	(B)	Green sulfur bacteria	
(C)	Purple nonsulfur bacteria	(D)	Cyanobacteria	
12.	Green nonsulfur bacteria belong to	o which	ı phylum?	
(A)	α- Proteobacteria	(B)	γ - proteobacteria	
(C)	Firmicutes	(D)	Chloroflexi	
13.	Chlorophyll a, photosystem I & II, and oxygenic photosynthesis are the main features of:			
(A)	Cyanobacteria	(B)	Purple sulfur bacteria	
(C)	Green sulfur bacteria	(D)	None of these	

14.	Where are the light harvesting and electron transport chain components of blue- green algae located?			
(A)	Plasma membrane	(B)	Chlorosomes	
(C)	Thylakoid membranes	(D)	Cytoplasm	
15.	Phycobilisomes are protein comple	exes ma	nde up of pigments, namely:	
(A)	Chlorophyll a and chlorophyll b	(B)	Carotenoids and xanthophylls	
(C)	Phycoerythrin and phycocyanin	(D)	Bacteriochlorophylls and accessory pigments	
16.	Which pigment is mainly responsible for imparting the blue-green color of cyanobacteria?			
(A)	Phycocyanin and Chlorophyll	(B)	Phycoerythrin and Phycocyanin	
(C)	Phycocyanin and Cyanophycin	(D)	Phycocyanin only	
17.	Which pathway is utilized by cyane	obacte	ria for carbon dioxide fixation?	
(A)	Glyoxylate cycle	(B)	Calvin- Benson cycle	
(C)	Krebs cycle	(D)	Pentose phosphate pathway	
18.	What is the name of the polymer c some cyanobacteria to store extra i	onsistii nitroge	ng of arginine and aspartic acid, used by n?	
(A)	Cyanophycin	(B)	Phycoerythrin	
(C)	Phycocyanin	(D)	Phycobilin	
19.	What key enzyme responsible for carbon fixation is found in the carboxysomes of cyanobacteria?			
(A)	ATP synthase	(B)	Phosphofructokinase	
(C)	Rubisco	(D)	None of these	
20.	The name of cyanobacteria that produce geosmins, volatile organic compounds that have an earthy odor:			
(A)	Prochlorococcus & Microcystis	(B)	Microcystis & Synechococcus	

CHAPTER 5

Roots and Microbes: The Interplay in Soil Microbiology

A. Multiple Choice Questions

1.	What are the components of soil?				
(A)	Organic and inorganic matter	(B)	Soil microorganisms		
(C)	Air and water	(D)	All of these		
2.	The greatest number of microorganisms is generally found in which layer of soil?				
(A)	Topsoil	(B)	Deepsoil		
(C)	Bedrock	(D)	All of these		
3.	The most dominant group of microon	rganis	ms in soil is:		
(A)	Bacteria	(B)	Fungi		
(C)	Algae	(D)	Protozoa		
4.	What term is used to describe a mic and constant, deriving its nutrition fr	robial com na	population in soil that remains uniform ative soil organic matter?		
(A)	Autochthonous	(B)	Heterochthonous		
(C)	Zymogenous	(D)	Transient		
5.	What term is used to describe microorganisms in soil that require an external source of energy for fermentation and typically have a low population density?				
(A)	Pseudomonas	(B)	Bacillus		
(C)	Both (A) and (B)	(D)	Arthrobacter		

6.	What type of soil microorganism exhibits characteristics shared by both bacteria and fungi?			
(A)	Cyanobacteria	(B)	Myxobacteria	
(C)	Actinomycetes	(D)	Protozoa	
7.	Which characteristic of microorganis slowly, exhibit a powdery consistency	ms is , and	indicated by colonies that generally grow adhere firmly to the agar surface?	
(A)	Bacteria	(B)	Fungi	
(C)	Actinomycetes	(D)	None of the above	
8.	Which fungal structure is primarily involved in nutrient absorption in soil fungi?			
(A)	Mycelium	(B)	Hyphae	
(C)	Spores	(D)	Stroma	
9.	What term describes a dark-colored organic matter that is not easily deco	l, amo mpose	orphous substance composed of residual ed by microorganisms?	
(A)	Humic acid	(B)	Fulvic acid	
(C)	Humus	(D)	None of the above	
10.	How do soil fungi contribute to soil st	tructu	re and stability?	
(A)	By breaking down organic matter	(B)	By producing extracellular enzymes	
(C)	By forming mycorrhizal associations with plant roots	(D)	By secreting glues that bind soil particles together	
11.	What role do soil fungi play in the eco	osyste	m?	
(A)	Pollination	(B)	Photosynthesis	
(C)	Both (A) and (B)	(D)	Decomposition	
12.	Which type of photosynthetic bacterium grows on freshly exposed rocks, leading to the accumulation of their cells and subsequent decomposition of organic matter?			
(A)	Cyanobacteria	(B)	Actinobacteria	

Roots and Microbes

(C)	Purple sulfur bacteria	(D)	Spirochetes	
13.	What term describes the collective action of microbial, physical, and chemical processes that govern the movement of elements between sediments, water, and the atmosphere?			
(A)	Biological cycling	(B)	Biochemical cycling	
(C)	Biogeochemical cycling	(D)	Biophysiological cycling	
14.	Which of the following is NOT a major reservoir for phosphorus in the biogeochemical cycle?			
(A)	Rocks and minerals	(B)	Soil	
(C)	Atmosphere	(D)	Sedimentary rocks	
15.	What term describes the process by which organic matter breaks down into simpler, inorganic compounds?			
(A)	Assimilation	(B)	Mineralization	
(C)	Absorption	(D)	Adsorption	
16.	Which process releases sulfur into the atmosphere as sulfur dioxide (SO ₂), despite its essential role in the synthesis of certain amino acids and vitamins in living organisms?			
(A)	Nitrogen fixation	(B)	Photosynthesis	
(C)	Plant respiration	(D)	Volcanic eruptions	
17.	How do algae contribute to soil fertili	ity?		
(A)	Fixing atmospheric carbon dioxide	(B)	Increasing soil pH	
(C)	Providing organic matter for nutrient cycling	(D)	Producing antibiotics to suppress soil pathogens	
18.	Which of the following bacteria have	the ca	pability to oxidize sulfur to sulfates?	
(A)	Thiobacillus thioxidans	(B)	Thiobacillus ferrooxidans	
(C)	Both (A) and (B)	(D)	Rhodospirillum rubrum	

Environmental Microbiology and Basic Microbiological Techniques

A. Multiple Choice Questions

1.	How are pure cultures of microorganisms that form discrete colonies on solid media most commonly obtained?			
(A)	Agar slant method	(B)	Pour plate method	
(C)	Spread plate method	(D)	Streak plate method	
2.	Which technique entails the platin medium?	g of d	iluted samples combined with molten agar	
(A)	Streak plate method	(B)	Pour plate method	
(C)	Spread plate method	(D)	Serial dilution method	
3.	Which method of culturing micro microbial cells throughout an agar	oorgar mediu	nisms involves the uniform distribution of un by pouring the mixture into a Petri dish?	
(A)	Streak plate method	(B)	Spread plate method	
(C)	Pour plate method	(D)	Serial dilution method	
4.	What are the disadvantages of the	pour	plate method?	
(A)	It may result in inaccurate colony counts due to overlapping colonies	(B)	Not suitable for heat-labile organisms	
(C)	Both (A) and (B)	(D)	It requires a large volume of agar medium	
5.	Which of the following techni psychrophilic microorganisms?	ques	proves unsuitable for the isolation of	
(A)	Pour plate method	(B)	Spread plate method	
(C)	Streak plate method	(D)	Serial dilution method	

Environmental Microbiology

Microbiology for ICAR NET 145

6.	Which of the following statements is incorrect about the spread plate method?			
(A)	The spread plate method involves spreading a diluted sample on the surface of an agar plate	(B)	It is commonly used for isolating pure cultures of microorganisms	
(C)	The spread plate method is suitable for anaerobic microorganisms	(D)	The colonies grow on the surface of the agar, making them easy to count and observe	
7.	Which of the following is not a me	thod o	f preservation?	
(A)	Serial dilution	(B)	Lyophilization	
(C)	Cryopreservation	(D)	Canning	
8.	What method involves rapidly freezing microbial cultures in liquid nitrogen at - 196°C?			
(A)	Lyophilization	(B)	Cryopreservation	
(C)	Pasteurization	(D)	Canning	
9.	Which of the following is not a cry	oprote	ective agent?	
(A)	DMSO	(B)	Paraffin	
(C)	Glycerol	(D)	Ethylene glycol	
10.	Which preservation method involv	es the	sublimation of cell water?	
(A)	Lyophilization	(B)	Cryopreservation	
(C)	Desiccation	(D)	Refrigeration	
11.	Which of the subsequent components is not found in nutrient agar medium?			
(A)	Beef extract	(B)	NaCl	
(C)	Peptone	(D)	Dextrose	
12.	What is the primary function of a	cryop	rotective agent?	
(A)	To prevent dehydration of medium	(B)	To prevent microbial contamination	

Devi et al.

(C)	To protect microbial cells from damage during freezing and thawing	(D)	To facilitate the freezing process of microbial cultures	
13.	What is the temperature of lyophilization?			
(A)	-20°C to -40°C	(B)	-50°C to -80°C	
(C)	-100°C to -120°C	(D)	0°C to 10°C	
14.	What is the most common method of food preservation that involves storing food a temperatures above freezing but below room temperature?			
(A)	Chilling	(B)	Refrigeration	
(C)	Freezing	(D)	Canning	
15.	Which of the following methods can be used to determine the number of bacteria quantitatively?			
(A)	Streak plate method	(B)	Agar slopes/slants	
(C)	Both (A) and (D)	(D)	Serial dilution and viable plate count	
16.	In which microbiological method i	s an ir	oculating loop typically used?	
(A)	Pour plate method	(B)	Streak plate method	
(C)	Spread plate method	(D)	All of the above	
17.	Which microbiological tool is com	monly	used for transferring bacterial cultures?	
(A)	Inoculating loop	(B)	Microcentrifuge tube	
(C)	Petri dish	(D)	Pipette	
18.	Preserved cultures should be asses	sed fo	r the following traits before use except:	
(A)	Purity	(B)	Viability	
(C)	Productivity	(D)	Odor	
19.	What is the term for the destruction of microorganisms by burning?			
(A)	Sterilization	(B)	Disinfection	

Biotechnology of Microbes: Progress and Prospects

A. Multiple Choice Questions

1.	Which organism is most widely used for citric acid production?				
(A)	Lactobacillus bulgaricus	(B)	Micrococcus luteus		
(C)	Gluconobacteroxydans	(D)	Aspergillus niger		
2.	In which phase of microbial growth are secondary metabolites produced?				
(A)	Stationary phase	(B)	Death phase		
(C)	Lag phase	(D)	Log phase		
3.	Metabolites that play a direct role in the growth, development, and reproduction of microbes are referred to as:				
(A)	Primary metabolites	(B)	Secondary metabolites		
(C)	Tertiary metabolites	(D)	Quaternary metabolites		
4.	Which of the following is not a	distilled bev	/erage?		
(A)	Rum	(B)	Wine		
(C)	Whiskey	(D)	Brandy		
5.	Which enzyme facilitates the b	reakdown o	f starch into fermentable sugars?		
(A)	Protease	(B)	Cellulase		
(C)	Amylase	(D)	Oxidase		
6.	Which step in beer fermentation	on encourage	es grain germination?		
(A)	Mashing	(B)	Fermenting		
(C)	Malting	(D)	Maturing		

Devi et al.

7.	Which term is used for the crushed fruit along with its juice utilized in wine production?				
(A)	Malt	(B)	Нор		
(C)	Wort	(D)	Must		
8.	What is the term for the anaerobic breakdown of organic matter, including proteins, resulting in foul-smelling compounds?				
(A)	Proteolysis	(B)	Putrefaction		
(C)	Putrefaction	(D)	Deamination		
9.	In what terms is the availability of water in food usually measured?				
(A)	Water activity	(B)	Water potential		
(C)	Water density	(D)	Water content		
10.	Which term is used to describe microbes thriving in environments with low water activity?				
(A)	Osmophiles	(B)	Thermophiles		
(C)	Hydrophiles	(D)	Xerophiles		
11.	Which of the following temperatures (HTST) method of pasteurization?	s is use	ed for the High Temperature Short Time		
(A)	62.8 °C for 30 min	(B)	100 °C for 30 seconds		
(C)	138°C for 3 seconds	(D)	72°C for 15 seconds		
12.	The use of high hydrostatic pressure	to pro	eserve food is known as:		
(A)	Pascalization	(B)	Pasteurization		
(C)	Hydrogenation	(D)	Appertization		
13.	The use of gamma radiation for food	l prese	ervation is known as:		
(A)	Pascalization	(B)	Appertization		
(C)	Radappertization	(D)	Canning		

14.	Which of the following fermented foods commonly does not use shredded cabbage as a key ingredient?				
(A)	Kimchi	(B)	Kombucha		
(C)	Tempeh	(D)	Sauerkraut		
15.	Which fungal genus is primarily r	esponsib	le for the production of aflatoxin?		
(A)	Aspergillus	(B)	Rhizopus		
(C)	Penicillium	(D)	Candida		
16.	Which fungal contaminants of corn are responsible for the production of fumonisins?				
(A)	Fusarium oxysporum	(B)	Fusarium verticillioides		
(C)	Aspergillus flavus	(D)	Penicillium chrysogenum		
17.	Which type of toxins are responsi	ble for St	aphylococcal intoxication?		
(A)	Neurotoxins	(B)	Exotoxins		
(C)	Endotoxins	(D)	Enterotoxins		
18.	Who is known as the 'Father of C	anning'?			
(A)	Thomas Edison	(B)	Nicolas Appert		
(C)	John Mason	(D)	Clarence Birdseye		
19.	Which organism is responsible for	r causing	the ropiness of bread?		
(A)	Serratia marcescens	(B)	Aspergillus niger		
(C)	Geotrichum aurantiacum	(D)	Bacillus licheniformis		
20.	What is the term for the centrifugal procedure utilized to eliminate bacteria from milk?				
(A)	Bactofugation	(B)	Bacteriofugation		
(C)	Centrifugation	(D)	Pasteurization		

Microbial Physiology and Ecology

A. Multiple Choice Questions

1.	Which of the following is a common method used by bacteria to regulate their internal osmotic pressure?				
(A)	Accumulation of compatible solutes	(B)	Osmosis		
(C)	Active transport	(D)	Facilitated diffusion		
2.	What is a synchronous culture in microbiology?				
(A)	A culture containing only one type of microorganism	(B)	A culture where microorganisms are in the same phase of the growth cycle		
(C)	A culture where all microorganisms grow at the same rate	(D)	A culture maintained under constant environmental conditions		
3.	Which of the following best describes a synthetic medium in microbiology?				
(A)	Medium containing natural ingredients obtained from living organisms	(B)	Medium formulated using chemically defined components		
(C)	Medium enriched with complex nutrients for microbial growth	(D)	Medium containing specific inhibitors to select for certain microorganisms		
4.	What defines a complex medium in microbiology?				
(A)	Medium enriched with undefined, natural sources of nutrients	(B)	Medium containing chemically defined components		
(C)	Medium formulated with synthetic nutrients	(D)	Medium supplemented with antibiotics for selective growth		
5.	What is the primary advantage of using synthetic media in microbial culture?				
(A)	It supports the growth of a wide range of microorganisms	(B)	It allows for precise control over the composition of nutrients		

Devi et al.

(C)	It is inexpensive and readily available	(D)	It provides complex nutrients for the fast growth of microbes		
6.	What defines enriched medium in microbiology?				
(A)	Medium containing only basic nutrients required for microbial growth	(B)	Medium supplemented with specific inhibitors to select for certain microorganisms		
(C)	Medium enriched with additional nutrients to support the growth of fastidious microorganisms	(D)	Media formulated with chemically defined components		
7.	What is the primary purpose of enrichment culture media in microbiology?				
(A)	To provide nutrients for the growth of a wide range of microorganisms	(B)	To isolate and cultivate microorganisms present in low numbers or with specific growth requirements		
(C)	To select specific microorganisms based on their metabolic properties	(D)	To inhibit the growth of unwanted contaminants in the culture		
8.	Non-synthetic culture medium is also referred to as:				
(A)	Complex medium	(B)	Defined medium		
(C)	Enriched medium	(D)	Differential medium		
9.	Which of the following is an example of differential media?				
(A)	Xylose Lysine Deoxycholate agar (XLD) medium	(B)	Luria-Bertani agar		
(C)	Stuart's medium	(D)	All of these		
10.	Deoxycholate-citrate agar medium is an example of:				
(A)	Selective and differential medium	(B)	Transport medium		
(C)	Differential medium	(D)	Selective and enriched medium		
11.	Which of the following is an example of transport media?				
(A)	Stuart's medium	(B)	Pike's medium		

Microbial Physiology and Ecology

Microbiology for ICAR NET 221

(C)	Glycerol- saline medium	(D)	All of these		
12.	Which indicator is used to detect acid production by Staphylococci in a mannitol- salt agar medium?				
(A)	Phenol red	(B)	Methyl red		
(C)	Bromothymol blue	(D)	Bromocresol green		
13.	Wilson and Blair's medium is primarily employed for the selective cultivation of:				
(A)	Staphylococci spp.	(B)	Salmonella spp.		
(C)	Yersinia spp.	(D)	Shigella spp.		
14.	MacConkey agar medium is an example of:				
(A)	Selective medium	(B)	Differential medium		
(C)	Both (A) and (B)	(D)	Enrichment medium		
15.	Which materials are inoculating loops typically made of?				
(A)	Stainless steel	(B)	Glass		
(C)	Platinum or nichrome wire	(D)	Plastic		
16.	Which of the following methods can be used to determine the number of bacteria quantitatively?				
(A)	Pour plate and spread plate	(B)	Streak plate		
(C)	Spread plate, pour plate, and streak plate	(D)	Pour plate and streak plate		
17.	What is the streak plate method?				
(A)	A method for inoculating liquid media	(B)	A method for obtaining pure cultures from a mixed population of microorganisms		
(C)	A method for identifying bacterial species based on colony morphology	(D)	A method for sterilizing laboratory equipment		

BIBLIOGRAPHY

- Willey JM, Sandman KM, Wood DH. Prescott's microbiology. 12th ed. New York: McGraw-Hill Education 2023.
- [2] Stanier RY, Ingraham JL, Wheelis ML, Painter PR. General microbiology. 5th ed. New Jersy, USA: Palgrave Macmillan 1987.
- [3] Frazier WC, Westhoff DC. Food microbiology. 18th ed. New York: Tata McGraw Hill 2003.
- Pommerville JC. Alcamo's fundamentals of microbiology. 8th ed. New York: Jones and Bartlett Publishers 2007.
- [5] Singh RP. Microbiology. 3rd ed. New Delhi, India: Kalyani Publishers 2012.
- [6] Subba Rao NS. Agricultural microbiology. 3rd ed. New Delhi: Medtech 2020.
- [7] Subba Rao NS. Soil microbiology. 5th ed. New Delhi: Medtech Scientific International 2017.
- [8] Baveja CP. Textbook of microbiology. 6th ed. New Delhi: Arya Publishing Company 2021.
- [9] Pelczar MJ, Chan ECS, Krieg NR. Microbiology. 5th ed. New Delhi: McGraw-Hill Education 1993.
- [10] Dubey RC, Maheshwari DK. A Textbook of microbiology. 1st ed. New Delhi: S Chand & Company Ltd. 1999.
- [11] Sharma PD. Environmental microbiology. 1st ed. Meerut, India: Rastogi Publications 2016.
- [12] Varnam AH, Evans MG. Environmental Microbiology. 1st ed. London, UK: Manson Publishing Ltd. 2000.
- [13] Matthews KR, Kniel KE, Montville TJ. Food microbiology: An introduction. 4th ed. United Kingdom: ASM Press 2017.
- [14] Ray B, Bhunia A. Fundamental food microbiology. 5th ed. New York: CRC Press Taylor & Francis Group 2013.

http://dx.doi.org/10.1201/b16078

- [15] Aneja KR. Experiments in microbiology plant pathology tissue culture and microbial biotechnology. 5th ed. New Delhi: New Age International Publication 2018.
- [16] Tate RL. Soil microbiology. 2nd ed. Toronto: John Wiley & Sons 2000.
- [17] Paul EA. Soil microbiology, Ecology and biochemistry. 4th ed. San Diego: Academic Press Inc 2015.

http://dx.doi.org/10.1016/B978-0-12-415955-6.00001-3

- [18] Vallabhaneni S. Soil microbiology- A laboratory manual (protocol and techniques). 1st ed. Germany: Lambert Academic Publishing 2012.
- [19] Ananthanarayan R, Paniker CKJ. Textbook of microbiology. 12th ed. India: Universities Press Pvt. Ltd. 2022.
- [20] Madigan MT, Martinko JM, Bender KS, Buckley DH, Stahl DA. Brock biology of microorganisms. 14th ed. Chennai: Pearson Education 2017.
- [21] Kahlon RS. Perspectives in microbiology. Ludhiana: National Agricultural Technology Information Centre 1996.

- [22] Tauro P, Kapoor KK, Yadav KS. An introduction to microbiology. 1st ed. New Delhi: Wiley Eastern Limited 1986.
- [23] Buckley RG. Environmental microbiology. New Delhi: CBS Publishers & Private limited 2019.
- [24] Edwards C. Microbiology of extreme environments. United States: McGraw-Hill Publishing Company 1990.
- [25] Edmonds P. Microbiology-An environmental perspective. London: Collier Macmillan Publishers 1978.
- [26] Tortora GJ, Funke BR, Case CL. Microbiology-An introduction. 8th ed. New Delhi: Pearson Education 2004.
- [27] Soni SK. Microbes A Source of Energy for 21st Century. New Delhi: New India Publishing Agency 2007.

http://dx.doi.org/10.59317/9788194281542

- [28] Heden CG. Techniques in pure and applied microbiology. United States: John Wiley & Sons 1969.
- [29] Umbriet WW. Modern microbiology San Francesco. WH Freeman and Company 1962.
- [30] Rajvaidya N, Markandey DK. Agricultural applications of microbiology. New Delhi: APH Publishing corporation 2009.
- [31] Reed G. Prescott & Dunn's industrial microbiology. 4th ed. New Delhi: CBS Publishers & Distributors Private Limited 2020.
- [32] Sivakumar PK, Joe MM, Sukesh K. An introduction to industrial microbiology. New Delhi: S Chand & Company Ltd 2010.
- [33] Clarke W. Biotechnology industrial microbiology. New Delhi: CBS Publishers & Distributors Private Limited 2016.
- [34] Subba Rao NS. Soil microbiology (fourth edition of soil microorganisms and plant growth). United States: Science Publishers 1999.
- [35] Kartan P. Advancement in soil microbiology. United Kingdom: Arcler Education Inc 2019.
- [36] Van Elsas JD, Trevors JT, Wellington EMH. Modern soil microbiology. 1st ed. New York: Marcel Dekkern, Inc. 1997.
- [37] Aneja KR. Modern food microbiology. 1st ed. New Delhi: Medtech 2017.
- [38] Adams MR, Moss MO. Food microbiology. 2nd ed. Kolkata: Panima Publishing Corporation 2002.
- [39] Jay JM. Modern Food microbiology. 4th ed. New Delhi: CBS Publishers & Distributors Private Limited 2005.
- [40] Nielsen J, Mousdale D, Allman T and Carlson RP Fermentation microbiology and biotechnology. 4th ed. New York: CRC Press 2020.
- [41] Ramanathan N. Environment microbiology. New Delhi: Kalyani Publishers 2018.
- [42] Ramesh KV. Environmental microbiology. Chennai: MJP Publishers 2019.
- [43] Glazer AN and Nikaido Hiroshi microbial biotechnology: Fundamentals of applied microbiology. 2nd ed. New York: Cambridge University Press 2008.
- [44] Kun LY. Microbial biotechnology-principles and applications. 2nd ed. Singapore: World Scientific Publishing Co. Pte. Ltd. 2006.

Bibliography

- [45] Jain A, Aggarwal J, Venkatesh V. Microbiology Practical. Manual first edition. New Delhi: Elsevier India 2018.
- [46] Sharma N, Devi S. A Laboratory manual on Practical handling of microorganisms and relevant general microbiology techniques. Solan (HP): Department of Basic Sciences, UHF, Nauni 2016.
- [47] Devi S, Rana K, Sankhyan N, Kaul R. Advances and applications in microbial physiology. United Kingdom: Cambridge Scholars Publishing 2023.
- [48] Vasanthakumari R. Textbook of microbiology third edition. Gurugram (India): Wolters Kluwer (India) Pvt. Ltd. 2016.
- [49] Verma DK. Microbiology for sustainable agriculture, soil health, and environmental protection. 1st ed. Toronto: Apple Academic Press 2019. http://dx.doi.org/10.1201/9781351247061
- [50] Reddy SM, Reddy BV, Babu GN, Girisham S. Applied microbiology (agriculture, environmental, food and industrial microbiology). 1st ed. Rajasthan: Scientific Publishers 2017.
- [51] Trivedi PC. Agriculture Microbiology and microbial applications. 1st ed. Jaipur: Pointer Publishers 2015.
- [52] Stanbury PF, Whitaker A, Hall SJ. Principles of fermentation technology. 2nd ed. Oxford: Butterworth-Heinemann Ltd. 1998.
- [53] Aiyer PVD. Basics of fermentation technology. New Delhi: Idea Publishing 2018.
- [54] Sharma V, Kuila A. Principles and applications of fermentation technology. 1st ed. USA: Wiley-Scrivener 2019.

Sunita Devi

Sunita Devi did Ph.D. from CSKHPKV, Palampur and serving as a teacher /researcher at Dr YSPUHF, Nauni-Solan (Himachal Pradesh) in the field of microbiology. Her areas of research include microbial biotechnology, environmental, and soil microbiology. She was awarded a university scholarship and was a holder of Rajiv Gandhi National Fellowship (UGC, Govt. of India) during her M.Sc. and Ph. D. programmes, respectively. She has guided four M.Sc. students. She has published 36 research papers, 16 book chapters and 34 popular articles besides authored a book. She has successfully completed three externally funded research projects as Pl and is currently handling one project as Co-Pl.

Kumari Manorma

Kumari Manorma received her M.Sc and doctoral degree in microbiology from Dr Y.S. Parmar University of Horticulture and Forestry, Nauni- Solan (Himachal Pradesh) India. She worked as a SRF for 6 months in the Department of Plant Pathology after her post-graduation. Currently, she is working as a project fellow in the Dept. of Basic Sciences, Dr YSPUHF, Nauni- Solan (Himachal Pradesh). Her main areas of research include, agricultural microbiology, microbial enzyme technology and biotechnology. She has published nine research papers, seven book chapters, and three popular articles.

Megha Sharma

Megha Sharma did M.Sc in microbiology from the Himachal Pradesh University, Shimla. Now she is pursuing her doctoral degree in microbiology under the guidance of Dr Sunita Devi from Dr Y.S. Parmar University of Horticulture and Forestry, Nauni- Solan (Himachal Pradesh) India. She has so far published two research papers, four book chapters, and three popular articles.

Subhash Chand

Subhash Chand has done M. Sc in microbiology from Dr YS Parmar University of Horticulture and Forestry, Nauni, Solan (Himachal Pradesh) India. Currently, he is pursuing doctoral degree under the guidance of Prof. Sunita Devi from Dr. YS Parmar University of Horticulture and Forestry, Nauni, Solan (Himachal Pradesh) India in the same field. His core interest lies in environmental and agricultural microbiology. He has so far published two research papers, four book chapters, and six articles.