HUMAN PAPILLOMAVIRUS VACCINATION AND SCREENING IN THE ELIMINATION OF HPV-ASSOCIATED CANCERS: EVIDENCE BASE FROM RANDOMIZED TRIALS

Matti Lehtinen

Bentham Books

Human Papillomavirus Vaccination and Screening in the Elimination of HPV-Associated Cancers: Evidence Base from Randomized Trials

Authored by

Matti Lehtinen

Department of CLINTEC Karolinska Institute, Stockholm Sweden

Human Papillomavirus Vaccination and Screening in the Elimination of HPV-Associated Cancers Evidence Base from Randomized Trials

Editor: Matti Lehtinen

ISBN (Online): 978-981-5305-48-7

ISBN (Print): 978-981-5305-49-4

ISBN (Paperback): 978-981-5305-50-0

© 2024, Bentham Books imprint.

Published by Bentham Science Publishers Pte. Ltd. Singapore. All Rights Reserved.

First published in 2024.

BENTHAM SCIENCE PUBLISHERS LTD.

End User License Agreement (for non-institutional, personal use)

This is an agreement between you and Bentham Science Publishers Ltd. Please read this License Agreement carefully before using the book/echapter/ejournal (**"Work"**). Your use of the Work constitutes your agreement to the terms and conditions set forth in this License Agreement. If you do not agree to these terms and conditions then you should not use the Work.

Bentham Science Publishers agrees to grant you a non-exclusive, non-transferable limited license to use the Work subject to and in accordance with the following terms and conditions. This License Agreement is for non-library, personal use only. For a library / institutional / multi user license in respect of the Work, please contact: permission@benthamscience.net.

Usage Rules:

- 1. All rights reserved: The Work is the subject of copyright and Bentham Science Publishers either owns the Work (and the copyright in it) or is licensed to distribute the Work. You shall not copy, reproduce, modify, remove, delete, augment, add to, publish, transmit, sell, resell, create derivative works from, or in any way exploit the Work or make the Work available for others to do any of the same, in any form or by any means, in whole or in part, in each case without the prior written permission of Bentham Science Publishers, unless stated otherwise in this License Agreement.
- 2. You may download a copy of the Work on one occasion to one personal computer (including tablet, laptop, desktop, or other such devices). You may make one back-up copy of the Work to avoid losing it.
- 3. The unauthorised use or distribution of copyrighted or other proprietary content is illegal and could subject you to liability for substantial money damages. You will be liable for any damage resulting from your misuse of the Work or any violation of this License Agreement, including any infringement by you of copyrights or proprietary rights.

Disclaimer:

Bentham Science Publishers does not guarantee that the information in the Work is error-free, or warrant that it will meet your requirements or that access to the Work will be uninterrupted or error-free. The Work is provided "as is" without warranty of any kind, either express or implied or statutory, including, without limitation, implied warranties of merchantability and fitness for a particular purpose. The entire risk as to the results and performance of the Work is assumed by you. No responsibility is assumed by Bentham Science Publishers, its staff, editors and/or authors for any injury and/or damage to persons or property as a matter of products liability, negligence or otherwise, or from any use or operation of any methods, products instruction, advertisements or ideas contained in the Work.

Limitation of Liability:

In no event will Bentham Science Publishers, its staff, editors and/or authors, be liable for any damages, including, without limitation, special, incidental and/or consequential damages and/or damages for lost data and/or profits arising out of (whether directly or indirectly) the use or inability to use the Work. The entire liability of Bentham Science Publishers shall be limited to the amount actually paid by you for the Work.

General:

2. Your rights under this License Agreement will automatically terminate without notice and without the

^{1.} Any dispute or claim arising out of or in connection with this License Agreement or the Work (including non-contractual disputes or claims) will be governed by and construed in accordance with the laws of Singapore. Each party agrees that the courts of the state of Singapore shall have exclusive jurisdiction to settle any dispute or claim arising out of or in connection with this License Agreement or the Work (including non-contractual disputes or claims).

need for a court order if at any point you breach any terms of this License Agreement. In no event will any delay or failure by Bentham Science Publishers in enforcing your compliance with this License Agreement constitute a waiver of any of its rights.

3. You acknowledge that you have read this License Agreement, and agree to be bound by its terms and conditions. To the extent that any other terms and conditions presented on any website of Bentham Science Publishers conflict with, or are inconsistent with, the terms and conditions set out in this License Agreement, you acknowledge that the terms and conditions set out in this License Agreement shall prevail.

Bentham Science Publishers Pte. Ltd. 80 Robinson Road #02-00 Singapore 068898 Singapore Email: subscriptions@benthamscience.net

CONTENTS

FOREWORD	
PREFACE	
CHAPTER 1 ETIOLOGICAL STUDIES ON CERVICAL NEOPLASIA – A SHOWCASE O	
CAUSAL INFERENCING	
INTRODUCTION AND PREMISES	
CHANGING SEXUAL RISK-TAKING BEHAVIOUR	
ECOLOGICAL EVIDENCE ON CAUSES OF CERVICAL CANCER	
EPIDEMIOLOGICAL EVIDENCE ON CAUSES OF CERVICAL CANCER	
EVIDENCE ON INTERACTING AND INDEPENDENT CARCINOGENS	
GENETIC EFFECT MODIFIERS IN CERVICAL CARCINOGENESIS	
CONCLUSION	
METHODS	
Finnish Maternity Cohort sub-samples	
Microbial Serology	
HLA Prevalence Data	
Data on Incident Cervical Cancer Cases and Cancer Incidence Data	
Mapping Method	
Data on Risk Taking Behaviour	•••••
CHAPTER 2 SAFETY, IMMUNOGENICITY AND EFFICACY OF HUMAN	
PAPILLOMAVIRUS VACCINES	
INTRODUCTION AND PREMISES	
SAFETY OF HUMAN PAPILLOMAVIRUS VACCINES	
IMMUNOGENICITY OF HUMAN PAPILLOMAVIRUS VACCINES	
EFFICACY OF HUMAN PAPILLOMAVIRUS VACCINES	
CONCLUSION	
METHODS	
Safety Studies	
Immunogenicity Studies	
Long-term Vaccine Efficacy Studies	
CHAPTER 3 IMPACT OF DIFFERENT HUMAN PAPILLOMAVIRUS VACCINATION	
STRATEGIES	
INTRODUCTION AND PREMISES	•••••
HERD EFFECTS GENERATED BY GENDER-NEUTRAL AND GIRLS-ONLY HPV	
VACCINATION OVERALL EFFECTIVENESS OF GENDER-NEUTRAL VERSUS GIRLS-ONLY HPV	
VACCINATION	
CONCLUSION	
METHODS	
A Priori Defined Statistical Analysis Plan and Power	
Determination of Vaccine Effectiveness, Herd Effect and Protective Effectiveness Role of the Independent Laboratory and International Steering Committee of the Trial	
CHAPTER 4 VACCINATION AND HUMAN PAPILLOMAVIRUS TYPE-REPLACEMENT	
INTRODUCTION AND PREMISES	
EPIDEMIOLOGICAL APPROACHES TO HPV-VACCINATION AND ASSOCIATED	
TYPE-REPLACEMENT	
THE MODELLING APPROACH TO UNDERSTANDING HPV-VACCINATION	
ASSOCIATED TYPE-REPLACEMENT	

	OLOGICAL APPROACHES TO HPV-VACCINATION AND ASSOCIATED TYPI PLACEMENT
	NCLUSION
	THODS
	Epidemiological Analyses
	Mathematical Modelling
	Ecological Analyses
CHAPT	ER 5 SCREENING AND TRIAGE OF CERVICAL NEOPLASIA IN HPV-
VACCIN	ATED WOMEN
	RODUCTION AND PREMISES
SAI	FETY OF INFREQUENT CERVICAL SCREENING OF HPV-VACCINATED WC
	REQUENT CERVICAL SCREENING OF HPV-VACCINATED WOMEN
	OGRESSION POTENTIAL OF HSIL IN HPV-VACCINATED WOMEN – EARLY
	FE STAGE TRIAGE
HP	V PERSISTENCE AND PROGRESSION OF HSIL IN HPV-VACCINATED WOM
	RLY STAGE TRIAGE
	V PERSISTENCE AND PROGRESSION OF HSIL IN HPV-VACCINATED WOM
	TE STAGE TRIAGE REQUENT SCREENING OF HERD EFFECT PROTECTED UNVACCINATED
	REQUENT SCREENING OF HERD EFFECT PROTECTED UNVACCINATED DMEN
	NCLUSION
ME	THODS
	Cohort
	Antibody Analyses
	HPV Typing
	Methylation Marker Analyses
	Statistics
	ER 6 SCREENING OF HUMAN PAPILLOMAVIRUS RELATED OROPHARYN
	RODUCTION AND PREMISES
PRI	EREQUISITES OF PREVENTATIVE MEASURES AGAINST HPV-ASSOCIATE
	SCC
	OPHYLACTIC HPV VACCINATION AGAINST OROPHARYNGEAL INFECTIO
SCI	REENING OF HPV-ASSOCIATED OPSCC
	Serological Screening
OT	DNA Screening
	EP-WISE COMBINATION OF THE PREVENTIVE MEASURES ST-EFFICIENCY OF OPSCC-PREVENTION
	NCLUSION
IVIE	
	Material Saralagy
	Serology HPV DNA Analyses
ENDGA	
ACKNOV	WLEDGEMENTS
REFERE	NCES
SPECIFI	C WEBPAGE FOR THE LECTURES
	T INDEX
SUBTECT	

FOREWORD

In 2024, the world is on the brink of eliminating formerly common forms of human cancer, in particular cervical cancer. The story of how this happened contains many lessons to be learned on how a major public health improvement could eventually be accomplished. Professor emeritus Matti Lehtinen has with an incredible persistence pursued original research on this subject since the 1970s. An overarching theme has been that the adoption of new scientific concepts requires a maximally reliable evidence base. Already in the 1970:ies the Nobel Prize winner Harald Zur Hausen proposed that a new type of HPV could be the long-sought infectious cause of cervical cancer. After his discovery of the most important oncogenic HPV (HPV16) in 1983 and the completion of worldwide surveys and a large cohort study of HPV and cervical precancer in 1987, it would seem like the stage was set to eliminate the cancers caused by HPV. However, it would take some 4 decades of careful science to arrive at the goal.

A book by a researcher who has been actively working with this task ever since is a muchneeded documentation of the key issues that must be addressed to achieve progress and also how to address them. The starting point is longitudinal cohort studies to establish etiology. This work had to start with first debunking earlier myths of herpes viruses as the cause of cervical cancer. Weak case-control studies had resulted in erroneous conclusion that kept being popular for many years until finally proven incorrect by prospective studies, a lesson on the need for strong study designs in etiological research that is worth contemplating for anyone interested in the correct etiology of diseases. HPV readily stood the test - prospective studies found it to be a strong risk factor for both cervical, anal, vulvar, vaginal, penile and oropharyngeal cancers.

The next phase was the evaluation of the safety and efficacy of HPV vaccines. When such trials were planned, there were important discussions regarding exactly what evidence would be needed. Repeatedly, there was a minority of only one person (Matti Lehtinen) who insisted on that the maximally reliable study design – randomized trials with invasive cancer as an endpoint - would be needed. As a result, such trials were performed only in Finland. With hindsight, it must be said that -although the final result of such trials took many years to complete - the fact that such studies were indeed performed and showed such strong cancer protection, is a very valuable basis for global elimination efforts.

The issue of which strategy to use for HPV vaccination is still being debated even to this day. Basic science and experiences from other vaccination programs clearly favored vaccination of both genders. However, the vaccination of only girls requires only half as many vaccine doses. Again, the assessment was that debates and predictions could probably continue for ever without reaching a clear consensus. Maximally reliable evidence from randomized trials of vaccination of girls only or vaccination of both genders would be required. Again, Finland is the only country that has provided the world with such evidence from the trials of Matti Lehtinen et al.

A stumbling block in many assessments of how to design a vaccination program is assessing the probability of type replacement. The concept means that if one virus type is eliminated by vaccination, some other type could appear. At one time, there was a plethora of uninformed studies on this subject. The concept described in the book is that this phenomenon could not possibly be seen before vaccine-targeted HPV types are near-eliminated in the population and that communities, where the vaccination strategy that achieves fastest HPV elimination (gender-neutral vaccination) has been used, would be the populations where the phenomenon could best be quantified. As presented in the book, the phenomenon is indeed seen but has qualifications that suggest that it will not be of importance to public health.

The next issue to tackle was the need for cervical screening. The fact that cervical screening was introduced without any randomized trials as evidence base has hampered the development of optimal public health policies for many decades. In the future, if and when the necessary risk factor for cervical cancer (HPV) is missing, it is no longer meaningful to continue with cervical screening as before, particularly as the screening program is not devoid of side effects. The assessment here was that, as these screening programs have been performed for >60 years, policies and procedures were likely to be firmly entrenched and change would probably not occur unless maximally reliable evidence was provided by randomized trials. As far as I know, there are no other randomized trials of reducing screening in the world and the efforts that Matti Lehtinen describes are therefore both innovative and of obvious public health importance.

The final chapter deals with a very frequently asked question, namely "Once cervical cancer is eliminated, which other cancer form is next in line for elimination?". The obvious answer is HPV-associated oropharyngeal cancers that in Western countries are responsible for almost as many deaths as cervical cancers. During the times when HPV infection was common, HPV-based screening for oropharyngeal cancers was not realistic. However, in the era where HPV is nearly eliminated, the predictive values of HPV screening for oropharyngeal cancer will increase, and the development and evaluation of new screening modalities that could be used for the elimination of oropharyngeal cancer might result in that also this major form of human cancer becomes slated for elimination.

In summary, this comprehensive narrative on how an important evidence base for cervical cancer elimination was obtained is important to understand the development of a new concept for public health. The forward-looking chapters on how science could promote a switch from unnecessary over-screening for cervical cancer to a new screening program for oropharyngeal cancer puts forward a vision for the future that should be of interest to anyone interested in cancer.

Joakim Dillner Karolinska Institute, Stockholm, Sweden

ii

PREFACE

I have been involved with studies on the causes and control of cervical neoplasia for close to 45 years. Evidence that helps rejecting the non-causal association between herpes simplex virus type 2 (HSV-2) and cervical cancer [1-3], and confirms the association between previous infection with human papillomavirus type 16 (HPV16) and development of cervical cancer later in life [4, 5] emerged 30-40 years ago. Like other cancers, cervical cancer is a multi-etiological disease. In a number of our cohort studies it was possible to set order among independent pieces of the puzzle like smoking [6] and infection with *Chlamydia trachomatis* [7], or interacting pieces like non-oncogenic HPV types 6/11 [8, 9] and HLA-type [10]. Chapter I of this book ends with a suggestion: Data from our Nordic cohort study setting that successfully participated in dissolving the etiology of cervical cancer should now be used to evaluate the performance of artificial intelligence in causal inferencing up to change of paradigma. This is now timely also to understand and tackle the cervical cancer epidemic that has been ongoing among fertile-aged Finnish women over the last 25 years [11].

Prophylactic vaccination against a defined infectious cause of human cancer followed by elimination of the cancer is not only the ultimate proof of related causality, but also the most efficient means to alleviate, even abolish the given infection-associated cancer-burden. Proving hepatitis B-virus (HBV) vaccine efficacy against hepatocellular carcinoma took 25 years [12]. Our active, from the beginning population-based, participation to phase II to phase IV trials that involved HPV-vaccine development, licensure, and implementation of HPV vaccination have produced safety, immunogenicity and efficacy data for both the bivalent and quadrivalent vaccines (for a review see Lehtinen and Dillner [13]). Besides providing reliable and uniquely sensitive safety data our population-based approach with health-registry linkages provided long-term (up to 15 years) immunogenicity follow-up for a head-to-head comparison of the licensed HPV vaccines [14, 15]. First evidence on the efficacy of the HPV vaccine against human cancer was provided, this time in 10 years from the vaccine licensure [16] and also from the above-mentioned population-based setting as described in Chapter II.

The bivalent and quadrivalent HPV vaccines were the first highly efficacious vaccines licensed against sexually transmitted infections and their sequelae, including HPV-associated immediate precancerous lesions [17-21]. The implementation of these vaccines into national vaccination programs has, however, been a disappointment with global HPV vaccination coverage in the targeted female age-groups being 12%, and not more than 43% in high-income countries, where vaccine price should not be an issue [22]. It is obvious that the WHO campaign to eliminate cervical cancer by 2030 is bound to fail unless new scientifically sound approaches are soon implemented. Chapter III describes in detail the Finnish community-randomized trial on the impact of different HPV vaccination strategies. Comparing the gender-neutral and girls-only vaccination of early adolescent birth cohorts we have proven the superb effectiveness of gender-neutral vaccination in the introduction of herd effect against HPV types 16/18/31/33/35 in less than four years post-vaccination [23-25].

Following already moderate gender-neutral HPV vaccination coverage, the ecological niche of the vaccine HPV types 16/18 becomes essentially vacated in four to eight years [26]. Various epidemiological approaches to identify the replacement of the vaccine types with non-vaccine, high-risk HPV types either in vaccinated women [27, 28] or unvaccinated women [29-31] have been unequivocal to say the least. This may have been because of the extremely short follow-up time for a single non-vaccine HPV type to take over the vacated ecological niche [32]. However, an ecological approach managed to disclose abrupt changes in the overall HPV type-distribution and documented replacement of HPV-vaccine types in

the vacated ecological niche already four years post gender-neutral vaccination [26]. Chapter IV elaborates on how and why the ecological tools used were more suitable than conventional epidemiological tools when trying to disclose what was and is happening in the HPV population biology following prophylactic vaccination.

There is an imminent danger that the Swiss cheese model applies to preventative measures against cervical cancer. Females, who do not get vaccinated as adolescents are prone to be the least active participants in organized cervical cancer screening [33]. However, the HPV vaccination-derived herd effect extends protection also to the marginalized females. Besides the remaining high-risk HPV types identified in cervical lesions of the fully vaccinated sexually active population may have considerably lower progression potential [34, 35]. Chapter V elaborates on new possibilities in HPV-independent triage of cervical precancer in HPV-vaccinated women and women, who have been under herd protection and acquired cervical infections from non-vaccine HPV types only [35].

Non-cervical HPV-associated cancers comprise one of the last black boxes in terms of population-attributable fractions of vaccine HPV types. Especially, the rapidly increasing HPV-associated oropharyngeal squamous cell carcinoma (OPSCC) calls for attention since it is already now as common as cervical cancer in a number of Western countries [36], and in the foreseeable future in a number of other countries as well. While prophylactic vaccination of HPV naïve birth cohorts is the ultimate solution also to HPV-associated OPSCC there are 30 to 50 young adult and middle-aged, most notably male birth cohorts that would benefit from effective screening of the disease. Most likely due to the anatomic location of the tumour, serological screening of HPV-OPSCC is possible due to the early appearance of HPV16 E6 protein antibodies 10 to 30 years before clinical diagnosis of the tumour. Chapter VI describes in detail the planned screening trial that again makes use of the Finnish cohort study setting with serum samples to be screened, which had already been taken 10 to 30 years ago [37].

In the post-vaccination era, when gender-neutral HPV vaccination has been implemented we are approaching the eradication of the most important oncogenic HPV types [11, 23]. This is qualitatively different from the WHO-pursued [38] elimination of cervical cancer below a certain low incidence (4/100.000) threshold. Finland is a striking example of how easily a country can slide above these arbitrary incidence thresholds. [11, 39]. How to reliably document impact and sustainability of such different public health interventions as prophylactic HPV vaccination, and screening and treatment of precancerous cervical lesions has not been solved yet [22]. On the contrary, the resilience of prophylactic HPV vaccination programs is being assessed as elaborated in the Endgame chapter.

Matti Lehtinen Department of CLINTEC Karolinska Institute, Stockholm Sweden

iv

1

CHAPTER 1

Etiological Studies on Cervical Neoplasia – A Showcase of Causal Inferencing

Abstract: Preventive medicine is largely about identification of causes of diseases and their removal. Cervical cancer in Finland is firstly a showcase and secondly a use-case of preventive medicine. Firstly, etiological studies on cervical cancer were for long confounded by the fact that sexually transmitted infections are surrogates of both risktaking behaviour in adolescent and young adult population, and occurrence of cervical cancer in middle-aged women. Identifying oncogenic human papillomaviruses (HPVs) as the true cause of cervical cancer among the multitude of different sexually transmitted micro-organisms required a Nobel-prize winning vision which was initially supported only by case-series evidence. It also required a paradigm shift that was facilitated by a correctly done epidemiological study and increased understanding on the molecular basis of exposure misclassification. All this was understood only after the etiological enigma had been resolved. Secondly, since the sexual revolution in 1960's first facilitated increase in risk-taking sexual behaviour associated sexually transmitted infections' incidence, and subsequently resulted in an increase in the incidence of cervical cancer. In the below Finnish use-case, the role of different causal (HPV16/18/31/45), intervening (Chlamydia trachomatis, smoking, HLA, HPV6/11) and non-causal (herpes simplex virus type 2) factors are put into perspective based on longitudinal, population-based studies. The established evidence base is now available for the evaluation of artificial intelligence/ machine learning performance in disclosing and judging causes of a chronic disease, cervical cancer.

Keywords: Artificial intelligence, Causality, Cervical cancer, Chlamydia, Evidence hierarchy, Herpes simple virus, HLA, Human papillomavirus, Nested case-control study, Smoking.

INTRODUCTION AND PREMISES

Medicine can be described as an observational science that is built in a very broad sense on medical disease history. In a philosophical sense causality in medicine, defined as a historical rather than physical science, is complicated (shown in the Conclusion of this chapter, and [40, 41]). However, judging what is truly causal in the context of chronic diseases, especially in the etiology of cancer, was pivotal for effective prevention already before the current rule of evidence based medicine in health care [42]. The recognition of cervical cytological changes

Matti Lehtinen All rights reserved-© 2024 Bentham Science Publishers

(koilocytes) pathognomonic for the true etiological factors (human papillomaviruses) of cervical neoplasia [43] paved the way for successful implementation of a preventative measure, *i.e.*, cervical Pap-screening [44]. With increased sensitivity and specificity stemming from the identification of the causal factor, the human papillomavirus (HPV) DNA cervical screening is still effective. In the following exercise, the difficulty and impact of assessing causal medical evidence hierarchy are evaluated in etiological and preventative research on cervical neoplasia.

I use this exercise to elaborate on the differences between conventional, scientifically verified causality as we know it in contemporary medicine compared to a newly coined term: causability in the context of artificial intelligence (AI) [45]. As a use-case to understand this dichotomy: causality *vs*.causability. I identify exposure trends to true causal factors of cervical cancer to human papillomavirus type 16 (HPV16) [5, 46] and smoking [6] *vs*. disclosure of non-causal associations with sexually transmitted infections such as herpes simplex virus (HSV) type 2 [1, 3, 5]. This etiological cervical cancer research was conducted as the Nordic serum bank and cancer registry collaboration that this author and professor Joakim Dillner coordinated, respectively between 1994-1999 and 2000-2009.

How to obtain and judge data on intervening factors: HLA (10), *Chlamydia trachomatis* [47, 48] and low-risk genital HPV types HPV6/11 (8, 9) is also pertinent. The exposure to the sexual risk-taking behaviour associated HPVs, most notably HPV types 6/11/18/31/33/45, and their interactions with or independence of the major cause HPV16, most notably in cervical carcinogenesis [49] is discussed. Finally, the impact of elimination and/or eradication of the true causal factors on the occurrence of cervical neoplasia incidence is contemplated from the causality *vs*.causability points of view with special reference to expected effectiveness of related public health interventions.

From the beginning of this exercise it is important to note that while AIsimulations on exposure associations, *i.e.*, causability in medicine seem to exist at the personal level, understanding causality in medicine also exists at a system level [45]. Furthermore, the explanation types are as follows: Type 1) A peer-topeer explanation as it is carried out, *e.g.* among physicians during medical reporting; Type 2) An educational explanation as it is carried out *e.g.* between teachers and students; and Type 3) A scientific explanation in the strict sense of science theory [40, 41] is at stake here.

Much of the etiological research on cervical neoplasia I have been involved with, and now reviewed as the use-case is associated with the last, Type 3 explanations.

Cervical Neoplasia

On the other hand, AI-simulations seem to deal with the Type 1 explanation and need neither theory nor hypotheses. They are fundamentally different from conventional medical research, and difficult to catch.

By far medical research has strived to understand and control causes of diseases, using the above-mentioned Type 3 scientific explanations, and in the case of cervical neoplasia eventually with notable success (Chapters II, III and V). In the bigger picture, the issue is about how etiological research in medicine has been till now, and how it performs to provide data and deliver effective public health measures now and in the foreseeable future.

CHANGING SEXUAL RISK-TAKING BEHAVIOUR

In Finland, quadrupling numbers of life-time sexual partners have been evident over 40 years. This set the stage for the increase of cervical cancer incidence. A decrease in age at sexual debut and 50% increase in active smoking were both noted for 20 years between 1970 and 1990 but not later (Table 1, [50 - 52]).

Table 1. Changes in surrogates of sexual risk-taking behavior and smoking in fertile-aged Finnish women between 18 to 45 years of age.

Year	Mean Number of Life-time Sexual Partners	Mean Age at Sexual Debut (%)	Proportion of Active Smokers (%)
1970	2.5	18.9	16
1990	6.9	17.1	26
2000	7.9	16.6	20
2010	9.9	16.6	15

Haavio-Mannila et al. 2001, Kontula et al. 2008, THL Reports, Kouluterveyskysely 2022.

Since late 1990's, for more than 25 years the incidence of invasive cervical cancer has been continuously increasing from less than 4 per 100,000 to 16 per 100,000 person years in fertile-aged women (Fig. 1), [11]. The rigidness of the initially successful organized cervical screening which for 50 years has always got started at age 30 with 5-year intervals in the face of rapidly increasing risk-taking behaviour has proven a showcase on what can happen when disease prevention is not apt to contain changes of risk-taking behaviour and the associated increase of carcinogenic exposure.

Decrease of age at sexual debut plateaued and smoking returned to the levels seen in 1970's almost 20 years ago, yet the incidence of cervical cancer keeps on increasing. Trying to understand exposures that caused and are still causing the epidemic of cervical neoplasia in fertile-aged Finnish females, we can start by

Safety, Immunogenicity and Efficacy of Human Papillomavirus Vaccines

Abstract: Seizing the day is pivotal in vaccination licensure studies, especially when the new vaccine is supposed to protect against a chronic infection with long lead time between the preventable infection and diagnosis of the to-be prevented chronic disease. With appropriate population-based design, that relied on the unique Finnish personal identification number comprehensive health register follow-up was feasible for the definition of safety, immunogenicity and efficacy of both the bivalent and quadrivalent human papillomavirus (HPV) vaccines soon after their licensure. In essentially HPV vaccination naïve population head-to-head comparison of the two vaccines was also feasible. Respectively, in 2002 and 2004 enrolled 1,749 and 4,809 adolescent girls around the ages of 16-17 years were respectively participated in two phase III licensure trials (FUTURE II and PATRICIA) of the quadrivalent and bivalent HPV vaccines. At the same time in 2003 and 2005, 15,615 adolescent, 18-19 year old girls from adjacent birth cohorts were enrolled into a concomitant control cohort. Linkage of the HPV vaccinees cohort with the population-based Finnish Maternity Cohort Serum Bank enabled comparative head-to-head studies on the quadrivalent and bivalent vaccineinduced total and neutralizing antibody responses, which were proven to be equally sustainable up to 12 years post-vaccination, however, with a logarithmic difference in the antibody levels. Linkage of the HPV vaccinees cohort and the concomitant control cohorts with the country-wide Finnish Cancer Registry has enabled the definition of vaccine efficacy (VE) against invasive cervical cancer and cervical intraepithelial neoplasia grade 3 (CIN3+) during 18 years of follow-up with comparable intention-totreat VEs of 68.4% and 64.5%. Linkage with the Hostital Discharge Registry has provided a sentinel, most notably for new onset autoimmune diseases (NOADs) that proved to be more than twice as sensitive as reporting of serious adverse effects but as such did not identify any NOAD-incidence differences between the HPV and control vaccines or unvaccinated population.

Keywords: Efficacy, End-point, Enrolment, Follow-up, Health registry, Immunogenicity, Population-based study, Randomization, Safety, Vaccine efficacy.

INTRODUCTION AND PREMISES

The prophylactic vaccination involves healthy individuals who would not need the specific vaccine shots without exposure to the respective micro-organism.

> Matti Lehtinen All rights reserved-© 2024 Bentham Science Publishers

Safety, Immunogenicity and Efficacy

Human Papillomavirus Vaccination and Screening 19

Since such exposure and the following infectious disease, even in its epidemic phase, not always materialize in all vaccinated individuals, the adverse effects from prophylactic vaccination must be milder than those of catching the disease. Both the vector used to present the vaccine antigen and adjuvant used to augment the vaccine-induced immune response have not infrequently caused more severe adverse events: embolism following coronavirus vaccination with the adenovirus vector-derived vaccine [86]. and narcolepsy following influenza virus vaccination [87] compared to the prevented diseases would have been caused in adolescent and young adult women or children, respectively. Regrettably, both of the above-mentioned examples have also shown that vaccine manufacturers tend to belittle or deny unexpected adverse effects that emerge after mass vaccination. At the end of the day, it is the responsibility of public health authorities when launching national vaccination programs to provide adequate sentinels and/or surveillance systems for newly licensed vaccines like the more or less effectively adjuvanted HPV vaccines (see below).

Long-term vaccine-induced immunity, most notably sustainability of protective neutralizing antibody levels for decades is pivotal when exposure to the targeted micro-organisms is present continuously (*e.g.*. *Clostridium tetani*) or for decades (oncogenic human papillomaviruses). In the former case, of the tetanus toxoid vaccine, bolstering the initially induced protective immunity has become routine. This means the provision of additional shots of the single protein tetanus toxoid vaccine *e.g.*. with up to 20-year intervals. The widely used hepatitis B-virus (HBV) and HPV vaccines are also comprised of a single protein which, however, assemble into empty virus-like particles (VLPs), and with repetitive epitopes are better immunogens than the above-mentioned toxoids [88]. Not infrequently, however, due to genetic factors (HLA-DR4) it takes several additional vaccine shots to generate HBV antibody levels that confer protective and sustainable immune response [89]. As noted above, the VLP vaccines can be more or less adjuvanted with a dramatic (logarithmic scale) effect on thereby induced antibody levels [15, 90].

On the other hand, adding progressively more virus types into the multivalent vaccines tends to decrease the overall vaccine immunogenicity. In the case of quadrivalent HPV6/11/16/18 VLP-based HPV immunization, HPV18 antibodies are neither generated at all in up to 15% of vaccine recipients [91] or virtually lost in less than five years [92], and in the case of both the quadri- and nonavalent vaccines significantly lower than those induced by the bivalent vaccine [90, 93].

The late Maurice Hilleman noted at the 1st Helsinki HPV workshop in 2000 that there is no sterilizing immunity [94]. In addition, to be efficacious, the reduction of the infectious human papillomavirus dose by HPV-vaccination needs to

provide both the immunity against manifest infection and the long-term protection against HPV-related cancer [13, 16], most notably cervical cancer. Since cervical cancer probably originates from a single infected and consequently malignantly transformed cell, the success of reducing viral load, *i.e.*, the number of infected cells below the plausible threshold of neoplastic development [95] is pivotal here.

In 2001, when preparing for phase III licensure trial of what is now known as the quadrivalent HPV6/11/16/18 vaccine Merck vice-president Ed Skolnick remarked that there is no ethically sound way of providing data on the efficacy of a human vaccine against a cancerous end-point directly from randomized clinical trials. In the end of this chapter, I will discuss how this data was anyhow generated from our overlapping cluster and individually randomized trial setting [96, 97] in young adult women exploiting population-based recruitment of adolescent females and country-wide cancer register.

SAFETY OF HUMAN PAPILLOMAVIRUS VACCINES

Instead of opportunistic vaccination with the newly licensed bivalent and quadrivalent HPV vaccines, Finland in 2007 launched a population-based, community-randomized phase IV trial on the effectiveness of different HPV vaccination strategies [97], refer to Chapter IV Impact of human papillomavirus vaccination strategies. Aside from the effectiveness /impact end-point, end-points of this phase IV trial were safety end-points based on country-wide post-vaccination health-registry surveillance.

The trial participants were minors, 12 to 15-year-old girls and boys from 33 out of 34 Finnish communities (outside the Helsinki Metropolitan regions) with at least 35,000 inhabitants. The informed consents, even after providing the invitees with 10 pages of information on possible side-effects, were obtained from vaccinees and, in general, their highly vaccination-prone parents. These yielded permission to use the participant's personal identifier for post-vaccination health registry linkages. Approximately 52% of (20,514 of 39,420) girls and 20% to 30% of (11,662 of 40,852) boys participated equally well into the community-randomized trial, except for three communities. Lower than the a priori set cut-off level for low participation (20% relative difference from the mean coverage [24] was noted in one Arm B and, two Arm A communities on the western coast of Finland, of which one is notorious for anti-vaccinology attitudes.

Linking the PI-maintained Registry of Vaccinees with the Finnish National Hospital Discharge Registry for new onset autoimmune diseases (NOADs, Appendix) up to age 18.5 years took place after completing vaccination by the end of 2010 (interim analysis) and at the end of the trial in 2014 [98, 99]. In general, no abnormal safety signals were noted in the health registry follow-up.

Impact of Different Human Papillomavirus Vaccination Strategies

Abstract: The overall impact of vaccinating a population, *i.e.*, overall effectiveness always comprises direct effectiveness (vaccine efficacy) and indirect effectiveness (herd effect) of vaccination. In the case of human papillomavirus (HPV) vaccination the role of herd effect is especially strong due to the assortative nature of sexual risktaking behaviour and transmission of sexually transmitted micro-organisms, including genital HPV types. At the time of HPV vaccine licensure we launched a communityrandomized trial in Finland to provide real-life evidence on the impact of different vaccination strategies one of which was to be implemented into national Finnish vaccination program. In collaboration with the Finnish National Institute for Health and Welfare we invited in Autumn 2007 all 80,272 boys and girls from 1992-1995 birth cohorts, who attended one of the 250 junior high-schools in overall 33 Finnish towns outside the Helsinki Metropolitan regions. The study sites represented 33 of 34 Finnish communities with >35,000 inhabitants and were randomized 1:1:1 into 11 genderneutral HPV-vaccination communities, 11 girls-only HPV-vaccination communities, and 11 control (hepatitis B-virus) vaccination communities. Furthermore, with both parental and their own informed consent 20,513 girls and 11,662 boys participated in the school years 2007-2009. Between 2010 and 2014 11,396 cervical samples for HPV typing were obtained from 18.5 year-old females. We identified superb herd effect in the gender-neutral HPV vaccination communities against transient HPV18/31/33/35 infection as defined by PCR positivity and against persistent HPV type 16/18/31/35 positivity as defined by serology. Statistically significant rapid elimination of HPV types 18/31/33 by birth cohort was found only in the gender-neutral HPV vaccination communities. This study was possible only in the HPV vaccination naïve population, and the findings supported the implementation of gender-neutral HPV vaccination two years after their publication.

Keywords: Core group, Cumulative incidence, Effectiveness, Herd effect, Prevalence, Sero-prevalence, Vaccination coverage, Vaccine efficacy.

INTRODUCTION AND PREMISES

Establishing herd effect against sexually transmitted human papillomaviruses in the general population is, not surprisingly, prone to be efficient due to the assortative nature of risk-taking sexual behaviour [116]. In plain words, this is due to the fact that partners of individuals with low number of sexual partners also

have low number of sexual partners – this has been and in many countries still is an essential characteristic of the general population. With up to 70% of the entire population acquiring at least one sexually transmitted HPV infection during lifetime it is the general population that matters here. In this context, it is noteworthy that genital HPV infections do not cluster with venereal infections like syphilis, gonorrhoeae, chlamydia or genital herpes which are surrogates of sexual risktaking behaviour [117].

The first mathematical models on the overall effectiveness of HPV vaccination considered both direct vaccine efficacy (direct effectiveness) and herd effect (indirect effectiveness). The models that exploited population-based Finnish input data on sexual behaviour and occurrence of genital HPV infections predicted with low (30%) to moderate (70%) vaccination coverage statistically significant differences between the overall effectiveness of gender-neutral *vs*.girls-only vaccination strategies [118 - 120].

Knowing that passive Finnish Cancer Registry follow-up of our cluster (birth cohort) and individually randomized phase III trials were bound to deliver sound estimates on HPV-vaccine efficacy against cancer in 10 to 15 years [16, 96, 121]. I started to contemplate how to evaluate the effectiveness of different vaccination strategies in real life. Learning about the community-randomized trial setting in evaluating the effectiveness of different HIV interventions from King Holmes at the 1st Helsinki HPV Symposium in 2000 was seminal [116], and drafting comparison of the different HPV vaccination strategies in a community-randomized trial got started [119, 122].

For the funding of the desired effectiveness of different HPV vaccination strategies our contributions in the phase III HPV vaccination trials were very important. Most notably reaching the interim event-driven efficacy end-point fit for vaccine licensure [18] due to extra recruitment of 1500 Finnish adolescents in just a few months in early 2005 was pivotal.

At the time both GSK Biological and Sanofi-Pasteur-MSD (then the Europe distributor of Merck's quadrivalent HPV6/11/16/18 vaccine) were both interested in the services of our sound country-wide vaccination trial infrastructure. Negotiations with Sanofi-Pasteur MSD about the phase IV trial ended in late Autumn 2006 when Sanofi-Pasteur deemed the anticipated trial too expensive for the mere support of European delivery of the quadrivalent vaccine. However, in early 2007 I managed to sell the protocol (and study setting) of the below-described phase IV trial to GSK Biologicals for randomized implementation of their newly licensed bivalent HPV16/18 vaccine in Finland. For GSK the trial was partially to generate population-based safety data for the newly licensed vaccine

HPV Vaccination Strategies

but highly likely also to gain a foothold for HPV vaccination programs in northern European countries. Anyways, without GSK Biologicals' funding this unique phase IV trial on the overall effectiveness of HPV vaccination strategies, not mere direct HPV vaccine effectiveness (vaccine efficacy, sic) conducted between October 2007 and December 2014 would never have materialized.

The premises of this chapter were to elaborate the effectiveness of different HPV vaccination strategies implemented/assessed in Finland as a country-wide community-randomized phase IV trial [24, 31, 97, 123, 124]. The co-primary trial objectives, which I collaboratively designed and finalized with Gary Dubin (GSK Biologicals) and Geoff Garnett (Imperial College London) were to assess total effectiveness comprising direct effectiveness (vaccine efficacy), and indirect effectiveness (herd effect) of HPV vaccination in the gender-neutral arm or in the girls-only arm as compared to the control arm [97, 119]. The secondary objectives were to test the indirect and direct effectiveness of vaccination in HPV-vaccinated and control arms, *via* statistically powered comparison of the HPV-vaccinated gender-neutral arm *vs*.control arm and HPV-vaccinated girls-only arm *vs*.control arm.

This phase IV trial was launched immediately after the licensure of the bivalent HPV16/18 vaccine in October 2007 [97] the target population being early adolescent girls and boys of entire birth cohorts from 1992-1995 in 33 of 34 Finnish towns outside the Helsinki Metropolitan area with a minimum distance of 50 kilometers to avoid undue mixing of the adolescent population. Finally, in 2020 Finland launched gender-neutral HPV vaccination basing partially on our randomized trial data of the superb herd effect and total effectiveness of gender-neutral HPV vaccination as compared to girls-only HPV vaccination [24, 25, 97, 123, 124] (Fig. 9).

HERD EFFECTS GENERATED BY GENDER-NEUTRAL AND GIRLS-ONLY HPV VACCINATION

The most important prerequisite for estimating vaccination (program) generated herd effect, especially the effectiveness of different vaccination strategies in the herd effect generation is to have a vaccination-naïve target population willing to participate a randomized trial. When the licensure of the quadrivalent and bivalent vaccines to 15+ year-old females in the EU (Finland included) took place during Autumn 2006 and 2007, their very high price and slow opportunistic purchase kept the general Finnish population secluded from mass vaccination. This created an optimal vaccine naïve population to launch our community-randomized trial in October 2007. Overall, less than 1,000 full, three-dose regimen were sold to adolescent and young adult females in Finland before onset of our phase IV trial,

Vaccination and Human Papillomavirus Typereplacement

Abstract: We anticipated that moderate human papillomavirus (HPV) vaccination in the Finnish community-randomized trial will demonstrate changes in ecological niche of the circulating HPVs such as the niche occupation by non-vaccine-covered HPV types. In this study we exploited a re-randomized cervical screening trial that had been launched in 2014 among 14,686 HPV-vaccinees starting from 22-year-old omen, born in 1992 (refer to Chapter V). Approximately half of the HPV-vaccinees, 6,958 women participated the trial and provided serial cervical samples for HPV typing at ages 22, 25 and 28 years. With the trial follow-up we could verify the more (gender-neutral vaccination arm) or less (girls-only vaccination arm) efficient vacation of ecological niche initially occupied by the vaccine-covered HPV types 16/18/31/45 up to eight years post-vaccination. However, no consistent changes were observed neither in the gender-neutral arm nor in the girls-only arm in epidemiological analyses for the nonvaccine-covered HPV39/51/52/56/58/59/66/68/73 determined by PCR of cervical samples or by serology. In contrast, our analyses at the community level revealed rising ecological diversity of the more or less non-vaccine-covered HPV types 33/35/51/52/56/58/59 in gender-neutral vaccination communities with a stronger herd immunity compared with girls-only vaccination communities from four to eight years post vaccination. This is probably the first recorded sign of niche occupation by the non-vaccine-targeted HPV types post-population level vaccination.

Keywords: Alpha-diversity, beta-diversity, ecology, human papillomavirus, prevalence, seroprevalence, Shannon-index, type-distribution.

INTRODUCTION AND PREMISES

Prophylactic vaccination against micro-organisms is probably the most powerful imaginable public health intervention in human population biology. Most notably it can be highly cost-effective with sustainable impact, for example, eradication of small pox 50 years ago is still annually saving 70 million dollars [131]. However, there are caveats following vaccination, for instance replacement of vaccine-covered microbial types has been recognized world-wide since the ground-breaking work of Dr. Marc Lipsitch. Using a mathematical model he predicted more than 25 years ago how vacation of an ecological niche following vaccination would result in a replacement of the vaccine-covered bacteria by the non-vaccine

Matti Lehtinen All rights reserved-© 2024 Bentham Science Publishers

-covered bacterial lineages of the same micro-organism [132]. During the following decades worldwide, when pneumococcal vaccination programs were implemented a replacement of the vaccine-covered pneumococci types by non-vaccine-covered pneumococci was observed [133]. Unfortunately some of the replacing pneumococcal types, most notably *S. pneumoniae* type 19A, have been methicillin resistant [134].

Changes in microbial species subtype distribution also happen without vaccination, for example following migration. This became evident when *C. trachomatis* serotypes common in Finland during the 1980's were abruptly, replaced during the 1990's by other *C. trachomatis* serotypes following free, rapidly increasing traffic over the Finnish – Russian border after the breakdown of Soviet Union in 1991 [135]. Twenty years later, when the border-traffic had been normalized the *C. trachomatis* serotypes returned back to those characteristics in the Finnish population before the opening of the border. Thus, rapid changes in the subtype-distribution of sexually transmitted (intracellular) micro-organisms can also take place following population mixing and the establishment of new transmission networks.

The notable mixing of the vaccinated and unvaccinated population happens following the implementation of HPV-vaccination programs, especially the school-based programs. Within a few school years immunity and/or protection against most common HPV types are spread following direct and indirect (herd) effects of vaccination in the entire adolescent population. At the early stages of HPV vaccination campaigns the protected adolescent population mix with unvaccinated young adults among whom genital HPV types are extremely common with a prevalence of over 30% [54, 123]. This set-up for HPV type-replacement has been established in all Western countries that are implementing HPV vaccination programs.

Furthemore, I will elaborate on how we have studied with epidemiological, mathematical modelling and ecological means vaccination-induced changes in the population biology of HPV types exploiting our community-randomized trial setting. The comparison of originally HPV-vaccination naïve communities within which gender-neutral HPV vaccination, girls-only HPV-vaccination or HBV vaccination was implemented to four (1992, 1993, 1994, 1995) birth cohorts during two school years from 2007 - 2009 has given us a unique possibility to study HPV-vaccination related type-replacement. In addition, providing new data it has also been a learning experience to the limitations and gains of the three above-mentioned disciplines [26, 29 - 32].

EPIDEMIOLOGICAL APPROACHES TO HPV-VACCINATION AND ASSOCIATED TYPE-REPLACEMENT

Relying on vaccination-prone population and well-trained study personnel, who had successfully completed large-scale phase III and phase IV HPV vaccination trials all over Finland, we acquired population-based data for HPV type-replacement studies. This has required more than 15 years of hard work in conducting the community-randomized phase IV implementation trial between 2007 and 2014, and ensuring its follow-up as an individually randomized screening trial from 2014 onwards up to 2024 [11, 23]. In the previous Chapter III, I described how this database has been used in studies comparing the impact of different HPV vaccination strategies on occurrence of vaccine-targeted HPV types. The added value of these studies, studies on type-replacement following HPV-vaccination is described below.

In the first place, we reached out for the epidemiology tool box. We had successfully used the comparison of overtime changes in the relative proportions of microbial subtypes to disclose migration-related *C. trachomatis* type-replacement in the 1990's [135]. Thus, we first tested if the ranked order of non-vaccine covered genital HPV types' (HPV6/11/39/51/52/56/58/59/66) prevalence as determined by cervical PCR positivity would change differentially in the gender-neutral vaccination communities as compared to the girls-only vaccination communities, or in the control vaccine communities [29, 30]. No changes in the relative proportions of genital HPV types that could have been specific for a specific mode of the above-mentioned interventions were observed. Until age 22, *i.e.*, approximately 8 years post-vaccination the ranked order of genital HPV types among the non-vaccine-covered HPV types remained essentially the same in all consecutive birth cohorts (1992-1995) participating the community-randomized trial [30, 31].

Next, we evaluated epidemiological differences in type-specific HPV prevalence by arm. We used the community-randomized trial setting to compare arm-wise (gender-neutral vs.control arm, and girls-only vs.control arm) PCR prevalence ratios (PR) of HPV types 6/11/16/18/ 31/33/35/39/45/51/52/56/58/59/66/68 in cervical samples taken from vaccinated or unvaccinated women aged 18 and 22 [29, 30]. On the other hand, we compared pre- and post-vaccination trial seroprevalence (*i.e.* cumulative incidence) ratios (SPR) of HPV types 6/11/16/18/31/33/35/39/45/51/52/56/58/59/66/68/73 in the gender-neutral arm, in the girls-only arm and in the control arm among 22-year-old and younger unvaccinated women [31]. In addition to the general female population, we assessed the PR and SPR estimates in sexual risk-taking behaviour core groups,

Screening and Triage of Cervical Neoplasia in HPV-vaccinated Women

Abstract: We have been running an individually randomized cervical screening trial since 2014. All 14,686 HPV-vaccinated women from birth cohorts 1992-1995, who had received three vaccine shots between 12 to 15 years of age (12,402) or at 18 years of age (2,284). They were invited to participate in an individually randomized trial on infrequent vs.frequent cervical screening visits at ages 22, 25 and 28. The infrequently screened arm participants are informed only on cytological findings indicative of colposcopy and conisation, *i.e.*, high- grade squamous cervical intraepithelial lesion (HSIL) or adenocarcinoma in situ (AIS). Furthermore, due to in-country migration female residents in one of the original 33 vaccination trial communities or after having moved to the Helsinki Metropolitan Region after 2014 were eligible. Altogether 6,958 women consented with a very high (over 92%) compliance to participate in the second (6,381 women) and the third (4,616 of 5,100 women vaccinated as early adolescents in 2007-2009) screening visits. The occurrence of cervical lesions: ASCUS, low-grade squamous intraepithelial lesion (LSIL), high-grade squamous intraepithelial lesion (HSIL) and adenocarcinoma in situ has been equal in the different arms. The progression potential of the HSIL findings in the HPV16/18 vaccinated women is probably reduced as suggested by the identification of hypermethylation of HPVindependent cervical cancer risk genes in only a few of the diagnosed HSIL cases. A randomized trial to compare mere clinical follow-up vs.treatment of HSILs diagnosed in vaccinated women is highly warranted.

Keywords: Cervical cancer, Epigenomics, Human papillomavirus, High-grade squamous intraepithelial lesion, Methylation, Screening.

INTRODUCTION AND PREMISES

Following World War II, sexually transmitted infections, most notably syphilis and gonorrhea were common in many Western countries, including Finland. In Finland, and many other European countries the birth rate and the incidence of subtle cervical infections with oncogenic human papillomaviruses most likely peaked during the late 1940's and early 1950's. Following an approximately 15 to 20 years lead time the latter resulted in cervical cancer being the most common cancer in Finnish females during the 1960's and 1970's.

> Matti Lehtinen All rights reserved-© 2024 Bentham Science Publishers

Screening and Triage

Population-based Pap-screening of women between the ages 30 and 60 years was launched in 1963 in Finland to tackle the situation. Fortunately, the timing of this intervention was an important factor in the very successful outcome: rapid reduction of cervical cancer incidence below the WHO-recommended 4/100.000 by the beginning of the 1990's [44, 78].

The data on the underlying incidence of the then unknown genital oncogenic HPV16/18 infections, which was not known during 1960's does not exist. However, deducing from the relatively low levels of sexual risk-taking behaviour still in the early 1970's (Table 1, [50]) HPV16/18 (and other oncogenic HPV) incidence may have been at its (post-World War II) lowest among adolescent and young adult women in the 1960's, just before the two successful decades of organized cervical screening in Finland from 1970 to 1990.

Chapter I reviews population-based studies on the dynamics of HPV6/11/16/18/31/33 epidemics as indicated by seroprevalence (cumulative incidence) during 1980's and 1990's. There is scarce data from the Finnish Mobile Clinic Health Survey serum bank that HPV16 seroprevalence was very low at the beginning of 1970's. However, the sexual revolution swept through the adolescent and young adult Finnish population, both female and male, in the 1970's and continued through the 1980's and the 1990's. Consequently, from the 1980's to early 1990's especially the cumulative HPV16 infection incidence more than doubled in young adult Finnish females (Fig. 5, [54]) which was followed by continuously increasing incidence of invasive cervical cancer in fertile-aged females since the early 1990's (Fig. 6 [10, 11]).

With the risk-taking sexual behaviour spreading (in terms of high numbers of sexual partners) throughout the entire fertile-aged population [51] the HPV16 epidemic reached a plateau not earlier than by the middle of 2000's [57, 83]. Moreover, the rising cervical cancer incidence in the fertile-aged Finnish women [11] indicates the inability of organized cervical screening to tackle the adverse effects of subsequent HPV16 infection and cervical cancer epidemics, the two being the first and the second, but probably not the last population level sequelae of sexual revolution. How to tackle related imminent epidemic of oropharyngeal cancer in 60+ year-old men and women is elaborated in Chapter VI of this book.

On the flip side of inadequate cervical screening are its adverse effects, namely the increased risk of preterm birth (PTB) and PTB-associated fetal mortality [101]. However, even under such severe adverse effects with thousands of fetal deaths discovered over the 70 years of organized screening in Sweden (Dillner J, personal communication) and Finland – no major criticism has been raised. However, with the HPV-vaccination program induced rapid reduction of true

causes of cervical cancer, most notably HPV vaccine or vaccine-covered types 16/18/31/45, the positive predictive value of any cervical screening (HPV and cytological screening alike) is lost [136]. This will result in the vast majority of future positive findings in cervical screening being false positive findings. This is true regardless of which HPV-dependent screening method is used. Largely HPV-independent screening modalities, most notably the identification of hypermethylated cellular cervical cancer risk genes has lately raised plenty of attention in this respect [34].

Identification, diagnosis and treatment of precancerous cervical lesions, which ever more often do not have progression potential, is now a common adverse effect of this previously beneficial public health intervention. Among the fertileaged Finnish women, organized cervical screening devoid of any beneficial public health impact [11] has been ongoing for the last 25 years. On the contrary, there is good, albeit indirect evidence that avoiding the identification, diagnosis and treatment of precancerous cervical lesions in HPV-vaccinated women is significantly reducing their preterm birth rates [102]. In the forthcoming years our intention is to test in a randomized trial whether follow-up rather than treatment of precancerous (HSIL/AIS) cervical lesions caused by non-vaccine HPV types in HPV-vaccinated women is the optimal choice. In the foreseeable future, deviating from HPV science-based new standard of care towards unnecessary conisation may turn out to be a criminal offence against the health of an HPV-vaccinated woman.

SAFETY OF INFREQUENT CERVICAL SCREENING OF HPV-VACCINATED WOMEN

In 2014, we launched an individually randomized trial on the safety, accuracy and impact of infrequent *vs*.frequent cervical screening in women, who had received HPV16/18 vaccination in 2007-2009 as early adolescents between ages 12 to 15 years, *i.e.*, before exposure to oncogenic HPV types [138]. Our trial involves three screening visits at ages 22, 25 and 28 with the infrequent screening arm blinded on cytological cervical findings milder than high-grade squamous cervical intraepithelial lesions (HSIL) or cervical adenocarcinoma *in situ* (AIS) as compared to frequent screening arm where all cytological findings obtained at each visit are openly delivered to the trial participants. According to the local standard of care cytological HSIL/AIS lesions are indicative of colposcopy-directed biopsy followed by possible conisation.

The trial is conducted in the HPV-vaccination communities that took part in our community-randomized phase IV trial on the impact of different HPV vaccination strategies from 2007 to 2014 (see Chapter III). However, due to in-country

Screening of Human Papillomavirus Related Oropharyngeal Cancers

Abstract: During the last 30 years the incidence of head and neck cancers associated with human papillomavirus type 16 (HPV16) has rapidly increased in Finland and is now three-fold higher compared to 1990's also in neighbouring Scandinavian countries, most notably Sweden. This is due to the widespread increase of HPV16 infection that started in the 1980's both in Finland and Sweden. While, the recently launched, school-based gender-neutral HPV vaccination will eventually eliminate HPV-associated head and neck cancers preventing up to 1,000 annual cases in the Nordic countries, there are at least 30 birth cohorts that urgently need screening and treatment of the HPV-associated head and neck cancers. This chapter first evaluates the prospects of the elimination of HPV-associated head and neck cancers by gender-neutral HPV-vaccination. Thereafter a proof-of-concept screening study that exploits the population-based FMC Serum Bank comprising first-trimester blood samples which were collected for serological screening from virtually all, 96% of the one million Finnish women, who were pregnant between 1983 and 2016 is characterized.

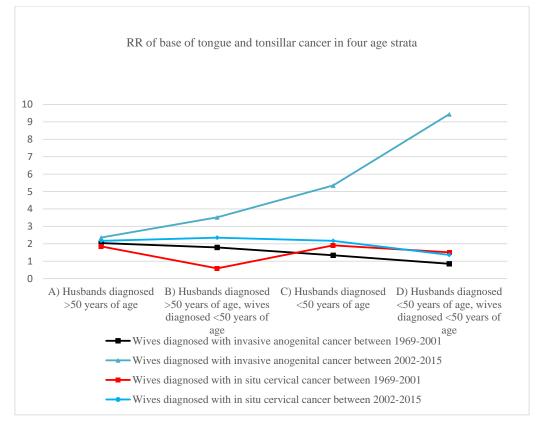
Keywords: Early antigen, Head and neck cancer, Human papillomavirus, Screening, Serology, Tongue cancer, Tonsillar cancer.

INTRODUCTION AND PREMISES

Plausible eradication of oncogenic HPV types, the necessary cause of cervical cancer [80], has opened the door for the elimination of most HPV-associated cancers. In fact, elimination of oropharyngeal HPV-associated cancers might be easier than the cervical cancer elimination because of a number of reasons: Cervical cancer is linked with a number of oncogenic HPV types: most notably with types 16/18/31/33 in squamous cell carcinomas and types 16/18/45 in cervical adenocarcinomas [48, 156], while most (>90%) HPV-associated head and neck cancers are positive for HPV16 alone [157].

The increasing incidence of head and neck cancers in Western countries (most notably the US and Nordic countries) has become evident 20 to 30 years following the start of HPV16 epidemics in these countries [54, 157 - 160]. In the western countries the incidence of head and neck cancers has increased in the last 30 years particularly in males. The increase is partially due to changes in sexual

behaviour and the associated increase of HPV16 infection, readily acquired due to its high reproductive rate and persistence [54, 118, 161]. The increase was first observed as increasing incidence of tonsillar and base of tongue cancers in Swedish males [160]. Over the last 30 years similar three to four -fold increases in the overall incidence of head and neck cancers, particularly in oropharyngeal cancer (OPC) have been registered in all the four Nordic countries [162].


One of the highest increases in age-specific OPC incidence has been documented in 50-69- year-old Nordic males among whom the annual occurrence has increased from 150 up to 500 cases. This increase was preceded by the epidemic increase of HPV16 infection incidence in the fertile-aged population during the 1980s and 1990's in Finland and the other Nordic countries [54, 160, 161]. On the other hand, the long lead time from persistent HPV16 infection to OPC has only gradually revealed these changes, and the incidence increase is now becoming more and more striking with an increased pace decades after the start of the HPV16 epidemics. Notably also the incidence of familial OPC in spouses of women with anogenital neoplasia increased up to 5-fold between 2000 and 2015 (Fig. 12) [163]. Familial HPV-cancers probably add up to the rapidly increasing incidence of HPV-associated OPC incidence in all Western countries. Furthermore, an increase of the OPC incidence in 70-85+ year-old females has recently been noted in the Helsinki Metropolitan area [162]. This also fits with the HPV16 epidemic starting in the 1980's in Finland and with the longer lead time between the incidence peaks of HPV16 infection and OPC (approximately 45 years) than that between HPV16 infection and cervical cancer (approximately 15 years).

Eventually, the implementation of gender-neutral HPV-vaccination programs that are predicted to eradicate HPV16 with a moderate 75% vaccination coverage [11, 23] will result in the elimination of also HPV-associated head and neck cancers. However, the notorious persistence of acquired HPV16 infections will continue to cause increasing numbers of OPCs for the next decades. Thus, an effective secondary prevention, *i.e.*, the screening of HPV-associated OPC is needed to protect the middle-aged birth cohorts that can no longer benefit from prophylactic HPV vaccination. Even if oncogenic HPV infections are a necessary cause of all cervical cancers [80] it is involved in less than 70% of OPCs [36]. For instance, regarding oral cavity cancers only 3% are HPV positive. This, makes it increasingly important to further investigate what kind of OPC types should be screened for and how?

In addition to highly effective HPV vaccination, both HPV-serology [164 - 168] and HPV DNA-detection [36] -based screening of HPV-associated OPCs exist. Possibilities for the elimination of HPV-associated head and neck cancers by birth

Matti Lehtinen

cohort –wise prophylactic vaccination or screening/diagnosis/treatment are presented in the following. Most notably, the diagnostics of occult oropharyngeal lesions that have a progression potential to OPC is difficult.

Fig. (12). Relative risk (RR) of oropharyngeal cancer in spouses of women with anogenital neoplasia (1 Invasive anogenital cancer, 2 cervical carcinoma I situ) by age and calendar time.

PREREQUISITES OF PREVENTATIVE MEASURES AGAINST HPV-ASSOCIATED OPSCC

In general, highly significantly increased relative risk (RR) estimates on the HPV16 and OPC association have been reported both in HPV serology and HPV DNA –based epidemiological studies (for reviews see [36, 169]. As for tonsillar cancer, even if it is very frequently HPV DNA positive, the serology-based RR-estimates are notably higher than the HPV DNA -based RR estimates [169]. This is in contrast to essentially comparable RR-estimates (HPV-serology or HPV DNA –based) on the association of infections with oncogenic HPV types and cervical cancer in corresponding epidemiological studies [5, 46], and deserves a comment.

ENDGAME

In the ideal world, culturally and economically feasible gender-neutral HPV vaccination of infants with a regimen comprising two vaccine shots (the latter being a mini-booster) that guarantee proper antibody response with sustainable neutralizing antibody levels will ultimately eradicate vaccine-covered oncogenic human papillomaviruses. The vacated ecological niche will be filled with other genital HPV types which, however, may lack the potential to cause lesions that would progress into cancer. For the vaccinated birth cohorts cervical screening may be restricted to once-in-a-life-time screening, and/or stopped in the foreseeable future. During the next decades this would save money and effort irrespectively of which income group countries that implement cost-effective HPV interventions belong to.

In the above-mentioned chapters, I have gone through the scientific evidence provided in a population-based fashion, most importantly from randomized controlled trials and implementation trials, in the Nordic countries on the most efficient control of HPV-associated cancers over a period of three decades. The above chapters correspond to six lectures I gave at different research institutes in two weeks last Autumn (Sep 28-Oct 12, 2023).

In Finland, the safety, immunogenicity, efficacy, effectiveness and impact (both at the individual level and population level) of the interventions were assessed in a series of randomized implementation trials mimicking alternative public health interventions. This was possible with massive help from my friends in Sweden and Germany, i.e., Joakim Dillner and Tim Waterboer. In times of trouble, high-quality analyses of tens of thousands of different DNA and serum samples stemming from the Finnish trials were analysed at the Karolinska Institute and DKFZ laboratories which maintained our independence from sponsors!

Finally, the cost-effectiveness and resilience of the interventions have been assessed with state-of-science dynamic transmission and progression models that have been fitted against the Nordic real-life data. The possibilities of predicting the forthcoming changes and rapidly correcting/fine-tuning the implemented public health interventions involving HPV infections and associated cancers are notable. In the ideal world, the Nordic countries will continue to serve as pilots for the implementation of preventative measures against HPV-associated diseases.

Tampere, March 28, 2024

ACKNOWLEDGEMENTS

I am in debt to our research coordinator Tiina Eriksson, and to the study nurses Anne Bly, Katja Harjula, Kaisa Heikkilä, Mari Hokkanen, Leila Huhtinen, Marja Ikonen, Heidi Karttunen, Pirkko Lappalainen, Mervi Nummela, Helena Seutu and Ulla Veivo just to name a few of the skilled and highly committed, altogether 85 study nurses, who made the close to a quarter of a million study visits happen retaining the participants' compliance to the study.

Our population-based observational studies and thereafter randomized immunogenicity, efficacy and effectiveness (of comparative intervention implementation) trials could not have been performed anywhere but in Finland. I am much obliged to Jussi Huttunen, Pekka Puska and Juhani Eskola former general directors of the Finnish Institute for Health and Welfare for their unconditioned support but most obliged to Finnish adolescent girls and boys, young adult women and men for their commitment to, in the end of the day, improve public health of young people world-wide by their own activity. I am also grateful to Matti Eskola (Finnmedi), Kari Natunen (Tampere University) and Heli Pehrman, Marita Timonen (Tampere University Hospital) for taking care of the study finances.

I should like to thank Tuomas Lehtinen, Tapio Luostarinen, Ville Pimenoff and Simopekka Vänskä for critical reading of and fruitful discussions on the manuscript. I am much obliged to Silja Saari and Pekka Saari for the cover figure which conveys the main message of gender-neutral HPV-vaccination induced herd effect among early adolescents, and to Mrs. Fariya Zulfiqar (Bentham Books) for her help with the edits.

New vistas to studies on the causes of cancer and control of infectious causes of cancer were opened to me by King Holmes, Maurice Hilleman, Richard Peto, and Harald zur Hausen. Collaboration with Dan Apter, Iacopo Baussano, Hans Berkhof, Gary Dubin, Miriam Elfström, Geoff Garnett, Penelope Gray, Danielle Heideman, Pentti Koskela, Karolina Louvanto, Tapio Luostarinen, Filipe Mariz, Belinda Nedjai, Pekka Nieminen, Michael Pawlita, Jorma Paavonen, Toni Patama, Ville Pimenoff, Eero Pukkala, Heljä-Marja Surcel, Simopekka Vänskä, Tim Waterboer and most importantly with Joakim Dillner has been pivotal in planning and conducting all these studies. Last but not least I should like to thank the international steering committee of our studies: Allan Donner, Eduardo Franco, Achim Schneider, Margaret Stanley, and especially late Pauli Leinikki for chairing the committee, and mentoring my scientific activities for 45 years.

My studies were funded by the Academy of Finland, Cancerfonden (SE), Cancer Foundation (FI), J&A Erkko Foundation, EU Framework programs, GSK Vaccines and Merck&Co. Inc.

REFERENCES

- Vonka V, Kanaka J, Hirsch I, *et al.* Prospective study on the relationship between cervical neoplasia and herpes simplex type-2 virus. II. Herpes simplex type-2 antibody presence in sera taken at enrolment. Int J Cancer 1984; 33(1): 61-6.
 [http://dx.doi.org/10.1002/ijc.2910330111] [PMID: 6319297]
- [2] Lehtinen M, Hakama M, Aaran R-K, *et al.* Herpes simplex virus type 2 infection in the etiology of cervical cancer. A prospective study in Finland. Cancer Causes Control 1992; 3: 333-8. [http://dx.doi.org/10.1007/BF00146886] [PMID: 1617120]
- [3] Lehtinen M, Koskela P, Jellum E, et al. Herpes simplex virus and risk of cervical cancer: a longitudinal, nested case-control study in the nordic countries. Am J Epidemiol 2002; 156(8): 687-92. [http://dx.doi.org/10.1093/aje/kwf098] [PMID: 12370156]
- [4] Dürst M, Gissmann L, Ikenberg H, zur Hausen H. A papillomavirus DNA from a cervical carcinoma and its prevalence in cancer biopsy samples from different geographic regions. Proc Natl Acad Sci USA 1983; 80(12): 3812-5. [http://dx.doi.org/10.1073/pnas.80.12.3812] [PMID: 6304740]
- [5] Lehtinen M, Dillner J, Knekt P, et al. Serological diagnosis of human papillomavirus type 16 infection and the risk of cervical carcinoma. BMJ 1996; 312: 537-9. [http://dx.doi.org/10.1136/bmj.312.7030.537] [PMID: 8595281]
- [6] Kapeu A, Youngman L, Jellum E, et al. Smoking is an independent risk factor of cervical cancer. Am J Epidemiol 2009; 169: 480-8. [http://dx.doi.org/10.1093/aje/kwn354] [PMID: 19074773]
- [7] Lehtinen M, Ault K, Lyytikainen E, *et al.* Chlamydia trachomatis is an independent risk factor of CIN. Sex Transm Infect 2011; 87: 372-6.
 [http://dx.doi.org/10.1136/sti.2010.044354] [PMID: 21471141]
- [8] Luostarinen T, af Geijersstam V, Bjørge T, et al. No excess risk of cervical carcinoma among women seropositive for both HPV16 and HPV6/11. Int J Cancer 1999; 80(6): 818-22. [http://dx.doi.org/10.1002/(SICI)1097-0215(19990315)80:6<818::AID-IJC4>3.0.CO;2-T] [PMID: 10074912]
- [9] Luostarinen T, Namujju P, Merikukka M, et al. Order of prevalent/incident sexually transmitted infections and the risk of CIN grade 3. Int J Cancer 2013; 133: 1756-60.
 [http://dx.doi.org/10.1002/ijc.28173] [PMID: 23526412]
- [10] Castro F, Haimila K, Pasanen K, *et al.* Geographic distribution of cervical cancer associated HLA antigens and cervical cancer incidence in fertile-aged Finnish women. Int J STD AIDS 2007; 18: 672-9.
 [http://dx.doi.org/10.1258/095646207782193803] [PMID: 17945045]
- [11] Lehtinen M, Gray P, Louvanto K, Vänskä S. In 30 years gender-neutral vaccination eradicates oncogenic human papillomavirus (HPV) types while screening eliminates HPV-associated cancers. Exp Rev Vaccines 2022. [http://dx.doi.org/10.1080/14760584.2022.2064279]
- [12] McMahon BJ, Bulkow LR, Singleton RJ, et al. Elimination of hepatocellular carcinoma and acute hepatitis B in children 25 years after a hepatitis B newborn and catch-up immunization program. Hepatology 2011; 54(3): 801-7.
 [http://dx.doi.org/10.1002/hep.24442] [PMID: 21618565]
- [13] Lehtinen M, Dillner J. Human papillomavirus vaccination trials and beyond. Nat Rev Clin Oncol 2013; 10: 400-10.
 [http://dx.doi.org/10.1038/nrclinonc.2013.84] [PMID: 23736648]

Matti Lehtinen All rights reserved-© 2024 Bentham Science Publishers

- Kann H, Faust H, Eriksson T, *et al.* Sustained cross-reactive antibody responses after HPV vaccinations. Up to 12 years follow-up in the Finnish Maternity Cohort. J Infect Dis 2021; 223: 1992-2000.
 [http://dx.doi.org/10.1093/infdis/jiaa617] [PMID: 33009576]
- [15] Mariz FC, Gray P, Bender E, et al. Sustainability of bi- and quadrivalent HPV vaccine-induced neutralizing antibodies. Lancet Infect Dis 2021; 10: 1458-68. [http://dx.doi.org/10.1016/S1473-3099(20)30873-2] [PMID: 34081923]
- [16] Luostarinen T, Apter D, Dillner J, et al. Vaccination protects against invasive HPV-associated cancers. Int J Cancer 2018; 142(10): 2186-7.
 [http://dx.doi.org/10.1002/ijc.31231] [PMID: 29280138]
- [17] Villa L, Perez G, Kjaer S, et al. Efficacy of a quadrivalent HPV types 8/11/16/18) L1 virus-like particle vaccine in the prevention of cervical intraepithelial neoplasia grades 2/3 and adenocarcinoma in situ: A randomized controlled trial. N Engl J Med 2007; 356: 1915-27.
- Paavonen J, Jenkins D, Bosch X, *et al.* Efficacy of a prophylactic adjuvanted L1 VLP vaccine against infection with HPV16/18: an interim analysis of a phase III double-blind, randomized controlled trial. Lancet 2007; 369: 2161-70.
 [http://dx.doi.org/10.1016/S0140-6736(07)60946-5] [PMID: 17602732]
- [19] Dillner J, Kjaer S, Wheeler C, et al. Four year efficacy of prophylactic human papillomavirus (types 6/11/16/18) L1 virus-like particle vaccine against low-grade cervical, vulvar, and vaginal intraepithelial neoplasia and condylomata accuminata. BMJ 2010; 341: c3493. [http://dx.doi.org/10.1136/bmj.c3493] [PMID: 20647284]
- [20] Muñoz N, Kjaer SK, Sigurdsson K, et al. Impact of human papillomavirus (HPV)-6/11/16/18 vaccine on all HPV-associated genital diseases in young women. J Natl Cancer Inst 2010; 102(5): 325-39. [http://dx.doi.org/10.1093/jnci/djp534] [PMID: 20139221]
- [21] Lehtinen M, Paavonen J, Wheeler C, *et al.* Overall efficacy of HPV-16/18 vaccine against the most stringent cervical pre-cancer end-points: end-of study report of a double blind, randomized trial. Lancet Oncol 2012; 13: 89-99.
 [http://dx.doi.org/10.1016/S1470-2045(11)70286-8] [PMID: 22075171]
- [22] Lehtinen M, Bruni L, Elfström M, et al. Scientific approaches toward improving cervical cancer elimination strategies. Int J Cancer 2024; 154(9): 1537-48. [http://dx.doi.org/10.1002/ijc.34839] [PMID: 38196123]
- [23] Lehtinen M, Baussano I, Paavonen J, Vänskä S, Dillner J. Eradication of human papillomavirus and elimination of HPV-related diseases – scientific basis for global public health policies. Expert Rev Vaccines 2019; 18(2): 153-60. [http://dx.doi.org/10.1080/14760584.2019.1568876] [PMID: 30657348]
- [24] Vanska S, Luostarinen T, Baussano I, *et al.* Vaccination with moderate coverage eradicates oncogenic HPV if a gender-neutral strategy is applied. J Infect Dis 2020; 222: 948-56. [http://dx.doi.org/10.1093/infdis/jiaa099] [PMID: 32161969]
- [25] Gray P, Kann H, Pimenoff VN, et al. HPV seroprevalence in pregnant women following genderneutral and girls-only vaccination programs in Finland: A Cross-sectional cohort analysis following a cluster-randomised trial. PLoS Med 2021; 18: e1003588. [http://dx.doi.org/10.1371/journal.pmed.1003588] [PMID: 34097688]
- [26] Pimenoff V, Gray P, Louvanto K, et al. Ecological diversity profiles of HPVs after gender-based community vaccination efforts. Cell Host Microbe 2023; 31: 1921-9. [http://dx.doi.org/10.1016/j.chom.2023.10.001] [PMID: 37944494]
- [27] Palmroth J, Merikukka M, Paavonen J, et al. Occurrence of vaccine and non-vaccine HPV types in adolescent Finnish females 4 years post vaccination. Int J Cancer 2012; 131: 2832-8. [http://dx.doi.org/10.1002/ijc.27586] [PMID: 22492244]

References

- [28] Tota JE, Struyf F, Merikukka M, et al. Evaluation of type replacement following HPV16/18 vaccination: Pooled analysis of two randomized trials. J Natl Cancer Inst 2017; 109(7): djw300. [http://dx.doi.org/10.1093/jnci/djw300] [PMID: 28132019]
- [29] Gray P, Palmroth J, Luostarinen T, et al. Evaluation of human papillomavirus type-replacement in unvaccinated/vaccinated adolescent females by vaccination program strategy. Post hoc analysis of a community randomized trial (II). Int J Cancer 2018; 142: 2491-500. [http://dx.doi.org/10.1002/ijc.31281] [PMID: 29377141]
- [30] Gray P, Luostarinen T, Vänskä S, *et al.* Occurrence of human papillomavirus type-replacement by sexual risk-taking behaviour group: Post hoc analysis of a community randomized trial up to nine years after vaccination (IV). Int J Cancer 2019; 145: 785-96. [http://dx.doi.org/10.1002/ijc.32189] [PMID: 30719706]
- [31] Gray P, Kann H, Faust H, et al. Long-term of HPV type-replacement among young pregnant Finnish females before and after a community randomised HPV vaccination trial with moderate coverage. Int J Cancer 2020; 147: 3511-22. [http://dx.doi.org/10.1002/ijc.33169] [PMID: 32574384]
- [32] Man I, Vänskä S, Lehtinen M, Bogaards J. Modelling the impact of HPV type replacement: too early to tell? J Infect Dis 2021; 24: 481-91. [http://dx.doi.org/10.1093/infdis/jiaa032] [PMID: 31985011]
- [33] Kreusch T, Wang J, Sparén P, Sundström K. Opportunistic HPV vaccination at age 16–23 and cervical screening attendance in Sweden: a national register-based cohort study. BMJ Open 2018; 8(10): e024477. [http://dx.doi.org/10.1136/bmjopen-2018-024477] [PMID: 30282687]
- [34] Lehtinen M, Pimenoff VN, Nedjai B, et al. Assessing the risk of cervical neoplasia in the POST-HPV vaccination era. Int J Cancer 2023; 152(6): 1060-8. [http://dx.doi.org/10.1002/ijc.34286] [PMID: 36093582]
- [35] Louvanto K, Verhoef L, Pimenoff L, et al. Low methylation marker levels among HPV-vaccinated women with cervical high-grade squamous intraepithelial lesions. Int J Cancer 2024. [http://dx.doi.org/10.1002/ijc.35044]
- [36] Haeggblom L, Ramqvist T, Tommasino M, Dalianis T, Näsman A. Time to change perspectives on HPV in oropharyngeal cancer. A systematic review of HPV prevalence per oropharyngeal sub-site the last 3 years. Papillomavirus Res 2017; 4: 1-11. [http://dx.doi.org/10.1016/j.pvr.2017.05.002] [PMID: 29179862]
- [37] Lehtinen T, Elfström KM, Mäkitie A, et al. Elimination of HPV–associated oropharyngeal cancers in Nordic countries. Prev Med 2021; 144: 106445. [http://dx.doi.org/10.1016/j.ypmed.2021.106445] [PMID: 33678237]
- [38] Global strategy to accelerate the elimination of cervical cancer as a public health problem. World Health Organization Books 2020.
- [39] Lehtinen M, Pimenoff VN. Moral dilemma(s) in human papillomavirus vaccination revisiting the role of the herd effect. Euro Surveill 2021; 26(50): 2101154. [http://dx.doi.org/10.2807/1560-7917.ES.2021.26.50.2101154] [PMID: 34915973]
- [40] Popper K. Die Logik der Forschung. Wien (AUS): Springer-Verlag; 1935. [http://dx.doi.org/10.1007/978-3-7091-4177-9]
- [41] Stransky J. Karl Popper and the method of causal explanation in historical sciences. E-LOGOS -Electronic. J Philos 2020; 27: 30-7.
- [42] Sackett DL, Rosenberg WMC, Gray J A M, Haynes RB, Richardson WS. Evidence based medicine: what it is and what it isn't. BMJ 1996; 312(7023): 71-2. [http://dx.doi.org/10.1136/bmj.312.7023.71] [PMID: 8555924]

- [43] Purola E, Savia E. Cytology of gynecologic condyloma acuminatum. Acta Cytol 1977; 21(1): 26-31.[PMID: 264754]
- [44] Hakama M, Rasxnen-Virtanen U. Effect of a mass screening program on the risk of cervical cancer. Am J Epidemiol 1976; 103(5): 512-7. [http://dx.doi.org/10.1093/oxfordjournals.aje.a112253] [PMID: 1274953]
- [45] Holzinger A, Langs G, Denk H, Zatloukal K, Müller H. Causability and explainability of artificial intelligence in medicine. Wiley Interdiscip Rev Data Min Knowl Discov 2019; 9(4): e1312. [http://dx.doi.org/10.1002/widm.1312] [PMID: 32089788]
- [46] Wallin KL, Wiklund F, Ångström T, et al. Type-specific persistence of human papillomavirus DNA before the development of invasive cervical cancer. N Engl J Med 1999; 341(22): 1633-8. [http://dx.doi.org/10.1056/NEJM199911253412201] [PMID: 10572150]
- [47] Anttila T, Saikku P, Koskela P, et al. Serotypes of Chlamydia trachomatis and risk for development of cervical squamous cell carcinoma. JAMA 2001; 285(1): 47-51. [http://dx.doi.org/10.1001/jama.285.1.47] [PMID: 11150108]
- [48] Wallin KL, Wiklund F, Luostarinen T, et al. Chlamydia trachomatis infection: a risk factor in cervical cancer development - a population based prospective study. Int J Cancer 2002; 101: 371-4. [http://dx.doi.org/10.1002/ijc.10639] [PMID: 12209962]
- [49] Lagheden C, Eklund C, Lamin H, et al. Nationwide comprehensive human papillomavirus (HPV) genotyping of invasive cervical cancer. Br J Cancer 2018; 118(10): 1377-81. [http://dx.doi.org/10.1038/s41416-018-0053-6] [PMID: 29559733]
- [50] Haavio-Mannila E, Kontula O, Kuusi E. Trends in sexual life. The Population Research Institute; Helsinki (FI). 2001.
- [51] Kontula O. Suomalaisten seksuaalisuus. Väestöliitto (Family Federation Finland); Helsinki (FI) 2008.
- [52] Raportti THL. Tulisiko poikien HPV-rokotusten olla osa kansallista rokotusohjelmaa? 1-101 (in Finnish), Helsinki (FI); 2019.
- [53] Lyytikäinen E, Kaasila M, Koskela P, *et al.* Finnish Chlamydia trachomatis seroprevalence atlas of two decades 1983-2003. Sex Transm Infect 2008; 84: 19-22.
 [http://dx.doi.org/10.1136/sti.2007.027409] [PMID: 17911135]
- [54] Lehtinen M, Kaasila M, Pasanen K, et al. Seroprevalence ATLAS of HPV infections in Finland. Int J Cancer 2006; 120: 2612-9. a [http://dx.doi.org/10.1002/ijc.22131] [PMID: 16991128]
- [55] Laukkanen P. PhD Thesis; University of Oulu, Oulu (FI) 2012.
- [56] Hill AB. The environment and disease: association or causation? Proc R Soc Med 1965; 58(5): 295-300.

[http://dx.doi.org/10.1177/003591576505800503] [PMID: 14283879]

- [57] Merikukka M, Kaasila M, Palmroth J, et al. Differences in incidence/co-occurrence of vaccine and nonvaccine human papilloma viruses in Finnish population before HPV mass vaccination suggest competitive advantage for HPV33. Int J Cancer 2011; 128: 1114-9. [http://dx.doi.org/10.1002/ijc.25675] [PMID: 20839258]
- [58] Ronco G, Dillner J, Elfström KM, *et al.* Efficacy of HPV-based screening for prevention of invasive cervical cancer: follow-up of four European randomised controlled trials. Lancet 2014; 383(9916): 524-32.
 [http://dx.doi.org/10.1016/S0140-6736(13)62218-7] [PMID: 24192252]
- [59] Pukkala E, Andersen A, Berglund G, et al. Nordic biological specimen banks as basis for cancer studies. Acta Oncol (Madr) 2007; 46: 286-307.
 [http://dx.doi.org/10.1080/02841860701203545] [PMID: 17450464]

References

- [60] Lehtinen M, Surcel HM, Natunen K, Pukkala E, Dillner J. Cancer Registry follow-up for 17 million person-years of a nationwide maternity cohort. Cancer Med 2017; 6(12): 3060-4. [http://dx.doi.org/10.1002/cam4.1222] [PMID: 29071810]
- [61] Langseth H, Gislefoss RE, Martinsen JI, Dillner J, Ursin G. Cohort Profile: The Janus Serum Bank Cohort in Norway. Int J Epidemiol 2017; 46(2): 403-404g. [PMID: 27063606]
- [62] Dillner J, Lehtinen M, Bjorge T, et al. A prospective seroepidemiological study of human papillomavirus infection as arisk factor for invasive cervical cancer. J Natl Cancer Inst •••; 81997(89): 1293-9.
- [63] Bjørge T, Dillner J, Anttila T, et al. Prospective seroepidemiological study of role of human papillomavirus in non-cervical anogenital cancers. BMJ 1997; 315(7109): 646-9. [http://dx.doi.org/10.1136/bmj.315.7109.646] [PMID: 9310566]
- [64] Bjorge T, Hakulinen T, Engeland A, *et al.* A prospective study of the role of human papillomavirus in esophageal cancer. Cancer Res 1997; 57: 3989-92.
 [PMID: 9307283]
- [65] Mork J, Lie A-K, Glattre E, et al. A prospective study on human papillomavirus as a risk factor for head and neck cancer. N Engl J Med 2001; 344: 1125-31. [http://dx.doi.org/10.1056/NEJM200104123441503] [PMID: 11297703]
- [66] Dillner J, Knekt P, Boman J, et al. Sero-epidemiologal association between human-papillomavirus infection and risk of prostate cancer. Int J Cancer 1998; 75(4): 564-7.
 [http://dx.doi.org/10.1002/(SICI)1097-0215(19980209)75:4<564::AID-IJC12>3.0.CO;2-9] [PMID: 9466657]
- [67] Korodi Z, Dillner J, Jellum E, *et al.* Human papillomavirus 16, 18, and 33 infections and risk of prostate cancer: a Nordic nested case-control study. Cancer Epidemiol Biomarkers Prev 2005; 14(12): 2952-5.
 [http://dx.doi.org/10.1158/1055-9965.EPI-05-0602] [PMID: 16365015]
- [68] Syrjänen KJ. Condylomatous changes in neoplastic bronchial epithelium. Rep A Case Respir 1979; 38: 299-304.
 [http://dx.doi.org/10.1159/000194095]
- [69] Simen-Kapeu A, Surcel HM, Koskela P, Pukkala E, Lehtinen M. Lack of association between human papillomavirus type 16 and 18 infections and female lung cancer. Cancer Epidemiol Biomarkers Prev 2010; 19(7): 1879-81.
 [http://dx.doi.org/10.1158/1055-9965.EPI-10-0356] [PMID: 20551302]
- [70] Lehtinen M, Luukkaala T, Wallin KL, *et al.* Human papillomavirus infection, risk for subsequent development of cervical neoplasia and associated population attributable fraction. J Clin Virol 2001; 22(1): 117-24.
 [http://dx.doi.org/10.1016/S1386-6532(01)00172-X] [PMID: 11418359]
- [71] Lehtinen M, Lyytikäinen E, Koskela P, Surcel H-M, Paavonen J. Chlamydia trachomatis and risk for cervical neoplasia a meta-analysis. Proc 12th Int Chlamydia Congress. Salzburg. 2010.
- [72] Kjellberg L, Wang Z, Wiklund F, et al. Sexual behaviour and papillomavirus exposure in cervical intraepithelial neoplasia: a population-based case-control study. J Gen Virol 1999; 80(Pt 2): 391-8. [http://dx.doi.org/10.1099/0022-1317-80-2-391] [PMID: 10073699]
- [73] Dillner J, Elfström KM, Baussano I. Prospects for accelerated elimination of cervical cancer. Prev Med 2021; 153: 106827.
 [http://dx.doi.org/10.1016/j.ypmed.2021.106827] [PMID: 34599922]
- [74] Lehtinen M, Lagheden C, Luostarinen T, et al. Human papillomavirus vaccine efficacy against invasive, HPV-positive cancers: population-based follow-up of a cluster-randomised trial. BMJ Open 2021; 11(12): e050669.

[http://dx.doi.org/10.1136/bmjopen-2021-050669] [PMID: 35149535]

- [75] Lehtinen M, et al. Ten year follow-up of human papillomavirus vaccine efficacy against the most stringent cervical neoplasia end-point – registry-based follow-up of randomized trial cohorts. BMJ Open 2017; 7: e015867. b [http://dx.doi.org/10.1136/bmjopen-2017-015867] [PMID: 28821519]
- [76] Virtaranta-Knowles K, Sistonen P, Nevanlinna HR. A population genetic study in Finland: comparison of the Finnish- and Swedish-speaking populations. Hum Hered 1991; 41(4): 248-64. [http://dx.doi.org/10.1159/000154009] [PMID: 1783413]
- [77] Castro FA, Haimila K, Sareneva I, et al. Association of HLA-DRB1, interleukin-6 and cyclin D1 polymorphisms with cervical cancer in the Swedish population—A candidate gene approach. Int J Cancer 2009; 125(8): 1851-8. [http://dx.doi.org/10.1002/ijc.24529] [PMID: 19585495]
- [78] Anttila A, Pukkala E, Söderman B, Kallio M, Nieminen P, Hakama M. Effect of organised screening on cervical cancer incidence and mortality in Finland, 1963-1995: recent increase in cervical cancer incidence. Int J Cancer 1999; 83(1): 59-65.
 [http://dx.doi.org/10.1002/(SICI)1097-0215(19990924)83:1<59::AID-IJC12>3.0.CO;2-N] [PMID: 10449609]
- [79] Aurelian L, Manak MM, McKinlay M, Smith CC, Klacsmann KT, Gupta PK. "The herpesvirus hypothesis"—Are Koch's postulates satisfied? Gynecol Oncol 1981; 12(2): S56-87. [http://dx.doi.org/10.1016/0090-8258(81)90062-7] [PMID: 6273266]
- [80] Walboomers JMM, Jacobs MV, Manos MM, et al. Human papillomavirus is a necessary cause of invasive cervical cancer worldwide. J Pathol 1999; 189(1): 12-9.
 [http://dx.doi.org/10.1002/(SICI)1096-9896(199909)189:1<12::AID-PATH431>3.0.CO;2-F] [PMID: 10451482]
- [81] zur Hausen H, Gissmann L, Steiner W, Dippold W, Dreger I. Human papilloma viruses and cancer. Bibl Haematol 1975; 43(43): 569-71.
 [PMID: 183728]
- [82] Hempel CG. The function of general laws in history. J Philos 1942; 39(2): 35-48. [http://dx.doi.org/10.2307/2017635]
- [83] Kaasila M, Koskela P, Kirnbauer R, et al. Population dynamics of serologically defined infections with HPV11/16/18/31 in fertile-aged women. Int J Cancer 2009; 125: 2166-77. [http://dx.doi.org/10.1002/ijc.24539] [PMID: 19585500]
- [84] Arvaja M, Lehtinen M, Koskela P, Lappalainen M, Paavonen J, Vesikari T. Serological evaluation of herpes simplex virus type 1 and type 2 infections in pregnancy. Sex Transm Infect 1999; 75(3): 168-71.
 [http://dx.doi.org/10.1136/sti.75.3.168] [PMID: 10448394]
- [85] Sirén MK, Sareneva H, Lokki ML, Koskimies S. Unique HLA antigen frequencies in the Finnish population. Tissue Antigens 1996; 48(6): 703-7. [http://dx.doi.org/10.1111/j.1399-0039.1996.tb02695.x] [PMID: 9008314]
- [86] Suhaimi SNAA, Zaki IAH, Noordin ZM, Hussin NSM, Ming LC, Zulkifly HH. COVID-19 vaccineinduced immune thrombotic thrombocytopenia: a review. Clin Exp Vaccine Res 2023; 12(4): 265-90. [http://dx.doi.org/10.7774/cevr.2023.12.4.265] [PMID: 38025914]
- [87] Vuorela A, Freitag TL, Leskinen K, et al. Enhanced influenza A H1N1 T cell epitope recognition and cross-reactivity to protein-O-mannosyltransferase 1 in Pandemrix-associated narcolepsy type 1. Nat Commun 2021; 12(1): 2283. [http://dx.doi.org/10.1038/s41467-021-22637-8] [PMID: 33863907]
- [88] Amanna IJ, Slifka MK. Mechanisms that determine plasma cell lifespan and the duration of humoral immunity. Immunol Rev 2010; 236(1): 125-38.

[http://dx.doi.org/10.1111/j.1600-065X.2010.00912.x] [PMID: 20636813]

Van Damme P, Leroux-Roels G, Suryakiran P, Folschweiller N, Van Der Meeren O. Persistence of [89] antibodies 20 y after vaccination with a combined hepatitis A and B vaccine. Hum Vaccin Immunother 2017: 13(5): 972-80. [http://dx.doi.org/10.1080/21645515.2016.1274473] [PMID: 28281907]

- [90] Artemchuk H, Eriksson T, Poljak M, et al. Long-term seroresponse to human papillomavirus vaccines. Up to 12 years follow-up in the Finnish Maternity Cohort. J Infect Dis 2019; 219(4): 582-9. b [http://dx.doi.org/10.1093/infdis/jiy545] [PMID: 30239832]
- [91] Gray P, Mariz F, Eklund C, et al. Absence of total and neutralizing human papillomavirus type 18 L1 antibodies every seventh quadrivalent vaccine recipient: A population-based follow-up study of the intervention arms of two phase 3 trials. NPJ Vaccines 2024; 9: 146.
- [92] Olsson S, Villa L, Costa R, et al. Induction of immune memory following administration of a quadrivalent HPV6/11/16/18 L1 virus-like particle (VLP) vaccine. Vaccine 2007; 25: 4931-9. [http://dx.doi.org/10.1016/j.vaccine.2007.03.049] [PMID: 17499406]
- [93] Arrovo S, Eklund C, Lagheden C, et al. Head-to-head comparison of type-specific peak pseudovirion antibody levels induced by three doses of the bivalent vs.nonavalent human papillomavirus vaccines. J Infect Dis 2022; 226: 1195-9. [http://dx.doi.org/10.1093/infdis/jiac190]
- [94] Lehtinen M, Hilleman M. Vaccinating women against premature death. J Clin Virol 2000; 19(1-2): 123-33. [http://dx.doi.org/10.1016/S1386-6532(00)00145-1]
- [95] Ylitalo N, Sørensen P, Josefsson AM, et al. Consistent high viral load of human papillomavirus 16 and risk of cervical carcinoma in situ: a nested case-control study. Lancet 2000; 355(9222): 2194-8. [http://dx.doi.org/10.1016/S0140-6736(00)02402-8] [PMID: 10881892]
- Lehtinen M, Herrero R, Mayaud P, et al. Chapter 28: Studies to assess the long-term efficacy and [96] effectiveness of HPV vaccination in developed and developing countries. Vaccine 2006; 24 (Suppl. 3): S233-S241, 233-241. [http://dx.doi.org/10.1016/j.vaccine.2006.05.109] [PMID: 16950012]
- [97] Lehtinen M, Apter D, Baussano I, et al. Characteristics of a cluster-randomized phase IV human papillomavirus vaccination effectiveness trial. Vaccine 2015; 33(10): 1284-90. [http://dx.doi.org/10.1016/j.vaccine.2014.12.019] [PMID: 25593103]
- [98] Lehtinen M, Eriksson T, Apter D, et al. Safety of human papillomavirus (HPV) 16/18 vaccine in early adolescents: Interim analysis of a large community-randomized controlled trial. Hum Vaccin Immunother 2016; 12: 3177-85. [http://dx.doi.org/10.1080/21645515.2016.1183847] [PMID: 27841725]
- Bi D. Apter D. Eriksson T. Hokkanen M. et al. Safety of the HPV-16/18 AS04 adjuvanted vaccine in [99] adolescents: end-of-study results from a community-randomized study. Hum Vaccin Immunother 2019; 16: 1392-402. [http://dx.doi.org/10.1080/21645515.2019.1692557] [PMID: 31829767]
- [100] Arnheim-Dahlström L. Pasternak B, Svanström H, Sparén P, Hviid A. Autoimmune, neurological, and venous thromboembolic adverse events after immunisation of adolescent girls with quadrivalent human papillomavirus vaccine in Denmark and Sweden: cohort study. BMJ 2013; 347(oct09 4): f5906.
 - [http://dx.doi.org/10.1136/bmj.f5906] [PMID: 24108159]
- [101] Arbyn M, Kyrgiou M, Simoens C, et al. Perinatal mortality and other severe adverse pregnancy outcomes associated with treatment of cervical intraepithelial neoplasia: meta-analysis. BMJ 2008; 337(sep18 1): a1284. [http://dx.doi.org/10.1136/bmj.a1284] [PMID: 18801868]

- [102] Kalliala I, Eriksson T, Hokkanen M, *et al.* Reduced preterm birth rate after bivalent HPV vaccination in Finland. Prev Med 2021; 146: 106473.
 [http://dx.doi.org/10.1016/j.ypmed.2021.106473] [PMID: 33639181]
- [103] Draper E, Bissett SL, Howell-Jones R, *et al.* A randomized, observer-blinded immunogenicity trial of Cervarix(®) and Gardasil(®) Human Papillomavirus vaccines in 12-15 year old girls. PLoS One 2013; 8(5): e61825.
 [http://dx.doi.org/10.1371/journal.pone.0061825] [PMID: 23650505]
- [104] Mariz F, Bender N, Anantharama D, et al. Differences in the quantity and quality of peak induced by bivalent and quadrivalent human papillomavirus vaccines neutralizing antibodies. Nature Publishing Group Vaccines 2020; 5: 14.
- [105] Lehtinen M, Paavonen J. Shared conformational epitopes and efficacy of prophylactic HPV vaccination. Oncoimmunology 2012; 1: 995-6.
- [106] Godi A, Vaghadia S, Cocuzza C, et al. Contribution of Surface-Exposed Loops on the HPV16 capsid to antigenic domains recognized by vaccine or natural infection induced neutralizing antibodies. Microbiol Spectr 2022; 10: e0077922.
- [107] Lehtinen M, Gray P, Luostarinen T, et al. Head-to-head comparison of bivalent and quadrivalent vaccines for efficacy against cervical intraepithelial neoplasia grade 3+. Frontiers Cell Infect Microbiol 2024; 14: 1437704.
- [108] Lei J, Ploner A, Elfström KM, et al. HPV vaccination and the risk of invasive cervical cancer. N Engl J Med 2020; 383(14): 1340-8. b [http://dx.doi.org/10.1056/NEJMoa1917338] [PMID: 32997908]
- [109] Kjaer SK, Nygård M, Sundström K, et al. Final analysis of a 14-year long-term follow-up study of the effectiveness and immunogenicity of the quadrivalent human papillomavirus vaccine in women from four nordic countries. EClinicalMedicine 2020; 23: 100401. [http://dx.doi.org/10.1016/j.eclinm.2020.100401] [PMID: 32637895]
- [110] Rana M, Huhtala H, Apter D, *et al.* Cancer registry based follow-up in the understanding of long-term protection of HPV vaccinations against cervical carcinoma. Int J Cancer 2013; 132: 2833-8. [http://dx.doi.org/10.1002/ijc.27971] [PMID: 23180157]
- [111] Lehtinen M, Idänpään-Heikkilä I, Lunnas T, et al. Population based enrolment of adolescent girls into long-term human papillomavirus vaccination trial. Int J STD AIDS 2006; 17: 237-46. c [http://dx.doi.org/10.1258/095646206776253453] [PMID: 16595046]
- [112] Lehtinen M, Apter D, Dubin G, et al. Enrolment of 22,000 adolescents to a population based HPV vaccination trial. Int J STD AIDS 2006; 17: 517-21. d [http://dx.doi.org/10.1258/095646206778145550] [PMID: 16925896]
- [113] Sehr P, Rubio I, Seitz H, *et al.* High-throughput pseudovirion-based neutralization assay for analysis of natural and vaccine-induced antibodies against human papillomaviruses. PLoS One 2013; 8(10): e75677.
 [http://dx.doi.org/10.1371/journal.pone.0075677] [PMID: 24124504]
- [114] Artemchuk H, Triglav T, Oštrbenk A, Poljak M, Dillner J, Faust H. Seroprevalences of antibodies to 11 human papillomavirus (HPV) types mark cumulative HPV exposure. J Infect Dis 2018; 218(3): 398-405.
 - [http://dx.doi.org/10.1093/infdis/jiy107] [PMID: 29529245]
- [115] Woodhall SC, Eriksson T, Nykanen A-M, et al. Impact of HPV vaccination on quality of life. Eur J Contracept Reprod Health Care 2011; 16: 3-8. [http://dx.doi.org/10.3109/13625187.2010.536921] [PMID: 21158521]
- [116] Garnett G, Waddell H. Public health paradoxes and the epidemiology of human papillomavirus vaccination. J Clin Virol 2000; 19: 101-12.
 [http://dx.doi.org/10.1016/S1386-6532(00)00129-3] [PMID: 11091153]

- [117] Kibur M, Koskela P, Dillner J, et al. Seropositivity to multiple sexually transmitted infections is not common. Sex Transm Dis 2000; 27(8): 425-30.
 [http://dx.doi.org/10.1097/00007435-200009000-00001] [PMID: 10987446]
- [118] Barnabas R, Laukkanen P, Koskela P, et al. The epidemiology of HPV16 and cervical cancer in Finland and the potential of vaccination. PLoS Med 2006; 3: e138. [http://dx.doi.org/10.1371/journal.pmed.0030138] [PMID: 16573364]
- [119] Lehtinen M, French K, Dillner J, Paavonen J, Garnett G. Sound implementation of HPV vaccination. Therapy 2008; 5: 289-94.
 [http://dx.doi.org/10.2217/14750708.5.3.289]
- [120] Vänskä S, Auranen K, Leino T, *et al.* Impact of vaccination on 14 high-risk HPV type infections: a mathematical modelling approach. PLoS One 2013; 8(8): e72088. [http://dx.doi.org/10.1371/journal.pone.0072088] [PMID: 24009669]
- [121] Lehtinen M, Paavonen J. Efficacy of preventive human papillomavirus vaccination. Int J STD AIDS 2001; 12(12): 771-6. [http://dx.doi.org/10.1258/0956462011924317] [PMID: 11779365]
- [122] Lehtinen M, Paavonen J. Effectiveness of preventive HPV vaccination. Int J STD AIDS 2003; 14: 787-92.
 [http://dx.doi.org/10.1258/095646203322556084] [PMID: 14678583]
- [123] Lehtinen M, Söderlund-Strand A, Vänskä A, et al. Impact of gender-neutral or girls-only vaccination against HPV. Results of a community randomized trial (I). Int J Cancer 2018; 142: 949-58. a [http://dx.doi.org/10.1002/ijc.31119] [PMID: 29055031]
- [124] Lehtinen M, Luostarinen T, Vänskä S, et al. Gender-neutral vaccination provides improved control of human papillomavirus types 18/31/33/35 through herd immunity: Results of a community randomized trial (III). Int J Cancer 2018; 143(9): 2299-310. b [http://dx.doi.org/10.1002/ijc.31618] [PMID: 29845626]
- [125] Wheeler CM, Castellsague X, Garland S, et al. Efficacy of the HPV-16/18 AS04-adjuvanted vaccine against cervical infection and precancer caused by non-vaccine oncogenic HPV types (PATRICIA trial). Lancet Oncol 2012; 13: 100-10. [http://dx.doi.org/10.1016/S1470-2045(11)70287-X] [PMID: 22075170]
- [126] Brouwer AF, Meza R, Eisenberg MC. Transmission heterogeneity and autoinoculation in a multisite infection model of HPV. Math Biosci 2015; 270(Pt A): 115-25. [http://dx.doi.org/10.1016/j.mbs.2015.10.012] [PMID: 26518265]
- [127] Lehtinen M, Apter D, Eriksson T, et al. Effectiveness of various HPV vaccination strategies: A community randomised trial in Finland. Cancer Med 2021; 21(7759): 71.
- [128] Elfström KM, Lazzarato F, Franceschi S, Dillner J, Baussano I. Human papillomavirus vaccination of boys and extended catch-up caccination: Effects on the resilience of programs. J Infect Dis 2016; 213(2): 199-205.
 [http://dx.doi.org/10.1093/infdis/jiv368] [PMID: 26142436]
- [129] Donner A, Klar N. Confidence interval construction for effect measures arising from cluster randomization trials. J Clin Epidemiol 1993; 46(2): 123-31. [http://dx.doi.org/10.1016/0895-4356(93)90050-B] [PMID: 8437028]
- [130] Donner A. Some aspects of the design and analysis of cluster randomized trials. Appl Stat 1998; 47(1): 95-113.
 [http://dx.doi.org/10.1111/1467-9876.00100]
- [131] Jit M. Helsinki HPV Symposium.
- [132] Lipsitch M. Vaccination against colonizing bacteria with multiple serotypes. Proc Natl Acad Sci USA 1997; 94(12): 6571-6.

[http://dx.doi.org/10.1073/pnas.94.12.6571] [PMID: 9177259]

- [133] Weinberger DM, Malley R, Lipsitch M. Serotype replacement in disease after pneumococcal vaccination. Lancet 2011; 378(9807): 1962-73. [http://dx.doi.org/10.1016/S0140-6736(10)62225-8] [PMID: 21492929]
- [134] Lo SW, Gladstone RA, van Tonder AJ, et al. Pneumococcal lineages associated with serotype replacement and antibiotic resistance in childhood invasive pneumococcal disease in the post-PCV13 era: an international whole-genome sequencing study. Lancet Infect Dis 2019; 19(7): 759-69. [http://dx.doi.org/10.1016/S1473-3099(19)30297-X] [PMID: 31196809]
- [135] Wikström E, Bloigu A, Öhman H, *et al.* Overtime changes in C.trachomatis serotype distribution in Finnish females. Scand J Infect Dis 2014; 46: 397-400.
 [http://dx.doi.org/10.3109/00365548.2013.878031] [PMID: 24512374]
- [136] Gray P. PhD Thesis, Tampere University 2022.
- [137] Palmroth J. PhD Thesis. University of Kuopio 2023.
- [138] Louvanto K, Eriksson T, Elfstrom M, et al. Effectiveness of screening in human papillomavirus vaccinated women. Int J Cancer 2020; 147: 440-7. [http://dx.doi.org/10.1002/ijc.32802] [PMID: 31749143]
- [139] Taavela K, Eriksson T, Harjula K, Hokkanen M, Lehtinen M, Louvanto K. Comparative effectiveness research on the impact HPV vaccination on quality of life and equity. Quality Life Res 2024. [http://dx.doi.org/10.1007/s11136-023-03575-y]
- [140] Pimenoff VN, Tous S, Benavente Y, *et al.* Distinct geographic clustering of oncogenic human papillomaviruses multiple infections in cervical cancers: Results from a worldwide cross-sectional study. Int J Cancer 2019; 144(10): 2478-88. [http://dx.doi.org/10.1002/ijc.31964] [PMID: 30387873]
- [141] Brentnall AR, Vasiljevic N, Scibior-Bentkowska D, et al. HPV33 DNA methylation measurement improves cervical pre-cancer risk estimation of an HPV16, HPV18, HPV31 and EPB41L3 methylation classifier. Cancer Biomark 2015; 15(5): 669-75. [http://dx.doi.org/10.3233/CBM-150507] [PMID: 26406956]
- [142] Vink FJ, Dick S, Heideman DAM, et al. Classification of high-grade cervical intraepithelial neoplasia by p16^{ink4a}, Ki-67, HPV E4 and FAM19A4 / MIR124 -2 methylation status demonstrates considerable heterogeneity with potential consequences for management. Int J Cancer 2021; 149(3): 707-16. [http://dx.doi.org/10.1002/ijc.33566] [PMID: 33729551]
- [143] Verhoef L, Bleeker MCG, Polman N, *et al.* Evaluation of DNA methylation biomarkers ASCL1 and LHX8 on HPV-positive self-collected samples from primary HPV-based screening. Br J Cancer 2023; 129(1): 104-11.
 [http://dx.doi.org/10.1038/s41416-023-02277-z] [PMID: 37100874]
- [144] Banila C, Lorincz AT, Scibior-Bentkowska D, et al. Clinical performance of methylation as a biomarker for cervical carcinoma in situ and cancer diagnosis: A worldwide study. Int J Cancer 2022; 150(2): 290-302.
 [http://dx.doi.org/10.1002/ijc.33815] [PMID: 34562270]
- [145] Kremer WW, Steenbergen RDM, Heideman DAM, Kenter GG, Meijer CJLM. The use of host cell DNA methylation analysis in the detection and management of women with advanced cervical intraepithelial neoplasia: a review. BJOG 2021; 128(3): 504-14. [http://dx.doi.org/10.1111/1471-0528.16395] [PMID: 32619334]
- [146] Malmqvist E, Natunen K, Lehtinen M, Helgesson G. Just implemention of HPV vaccination in developed countries. J Med Ethics 2012; 38: 247-9. [http://dx.doi.org/10.1136/medethics-2011-100090] [PMID: 22138726]
- [147] Petäjä T, Pedersen C, Poder A, et al. Long-term persistence of humoral and mucosal immune response to HPV-16/18 ASO4-adjuvanted vaccine in girls & young women. Int J Cancer 2011; 129: 2147-57.

[http://dx.doi.org/10.1002/ijc.25887] [PMID: 21190190]

- [148] Faust H, Knekt P, Forslund O, Dillner J. Validation of multiplexed human papillomavirus serology using pseudovirions bound to heparin-coated beads. J Gen Virol 2010; 91(7): 1840-8. [http://dx.doi.org/10.1099/vir.0.019349-0] [PMID: 20181747]
- [149] Park I, Kemp TJ, Pinto LA. The HPV Serology Laboratory leads an initiative to standardize and harmonize human papillomavirus serology assays. PLoS Pathog 2023; 19(6): e1011403. [http://dx.doi.org/10.1371/journal.ppat.1011403] [PMID: 37384602]
- [150] Miller C, Kemp TJ, Pinto LA. Development of a proficiency testing program for HPV serology assays used to evaluate antibody responses in vaccine trials. J Immunol Methods 2023; 523: 113585. [http://dx.doi.org/10.1016/j.jim.2023.113585] [PMID: 37949349]
- [151] Söderlund-Strand A, Carlson J, Dillner J. Modified general primer PCR system for sensitive detection of multiple types of oncogenic human papillomavirus. J Clin Microbiol 2009; 47(3): 541-6. [http://dx.doi.org/10.1128/JCM.02007-08] [PMID: 19144817]
- [152] Kremer WW, Berkhof J, Bleeker MC, et al. Role of FAM19A4/ miR!24-2 methylation analysis in predicting regression of non-regression of CIN2/3 lesions. BMJ Open 2019; 029017.
- [153] Bonde J, Floore A, Ejegod D, *et al.* Methylation markers*FAM19A4* and*MIR124 -2* as triage strategy for primary human papillomavirus screen positive women: A large European multicenter study. Int J Cancer 2021; 148(2): 396-405. [http://dx.doi.org/10.1002/ijc.33320] [PMID: 32997803]
- [154] Steenbergen RDM, Snijders PJF, Heideman DAM, Meijer CJLM. Clinical implications of (epi)genetic changes in HPV-induced cervical precancerous lesions. Nat Rev Cancer 2014; 14(6): 395-405. [http://dx.doi.org/10.1038/nrc3728] [PMID: 24854082]
- [155] Langholz B, Jiao J. Computational methods for case-cohort studies. Comput Stat Data Anal 2007; 51(8): 3737-48.
 [http://dx.doi.org/10.1016/j.csda.2006.12.028]
- [156] Smith JS, Lindsay L, Hoots B, *et al.* Human papillomavirus type distribution in invasive cervical cancer and high-grade cervical lesions: A meta-analysis update. Int J Cancer 2007; 121(3): 621-32.

[http://dx.doi.org/10.1111/joim.13010] [PMID: 31733108]

- [http://dx.doi.org/10.1002/ijc.22527] [PMID: 17405118]
 [157] Näsman A, Du J, Dalianis T. A global epidemic increase of an HPV-induced tonsil and tongue base cancer potential benefit from a pan-gender use of HPV vaccine. J Intern Med 2020; 287(2): 134-52.
- [158] Ryser MD, Rositch A, Gravitt PE. Modeling of US human papillomavirus (HPV) seroprevalence by age and sexual behavior indicates an increasing trend of HPV infection following the sexual revolution. J Infect Dis 2017; 216(5): 604-11. [http://dx.doi.org/10.1093/infdis/jix333] [PMID: 28931221]
- [159] Hansen BT, Campbell S, Nygård M. Long-term incidence trends of HPV-related cancers, and cases preventable by HPV vaccination: a registry-based study in Norway. BMJ Open 2018; 8(2): e019005. [http://dx.doi.org/10.1136/bmjopen-2017-019005] [PMID: 29476028]
- [160] Näsman A, Attner P, Hammarstedt L, *et al.* Incidence of human papillomavirus (HPV) positive tonsillar carcinoma in Stockholm, Sweden: An epidemic of viral-induced carcinoma? Int J Cancer 2009; 125(2): 362-6. [http://dx.doi.org/10.1002/ijc.24339] [PMID: 19330833]
- [161] Hansen BT, Kjær SK, Arnheim-Dahlström L, *et al.* Age at first intercourse, number of partners and sexually transmitted infection prevalence among Danish, Norwegian and Swedish women: estimates and trends from nationally representative cross-sectional surveys of more than 100 000 women. Acta Obstet Gynecol Scand 2020; 99(2): 175-85. [http://dx.doi.org/10.1111/aogs.13732] [PMID: 31529491]
- [162] Lehtinen T, Soderlund-Strand A, Petaja T, et al. Prevalence of human papillomavirus (HPV) DNA in

men vaccinated with HPV16/18 vaccine as early adolescents. J Infect Dis 2017; 216: 966-8. [http://dx.doi.org/10.1093/infdis/jix415] [PMID: 28968844]

- [163] Lehtinen T, Zhang L, Sundquist K, *et al.* Familial association of oropharyngeal and anogenital HPVcancers is calendar-time dependent. Cancer Med, in press.
- [164] Beachler DC, Waterboer T, Pierce Campbell CM, et al. HPV16 E6 seropositivity among cancer-free men with oral, anal or genital HPV16 infection. Papillomavirus Res 2016; 2: 141-4. a [http://dx.doi.org/10.1016/j.pvr.2016.07.003] [PMID: 28239675]
- [165] Lang Kuhs KA, Pawlita M, Gibson SP, et al. Characterization of human papillomavirus antibodies in individuals with head and neck cancer. Cancer Epidemiol 2016; 42: 46-52. [http://dx.doi.org/10.1016/j.canep.2016.03.003] [PMID: 27010729]
- [166] Lang Kuhs KA, Kreimer AR, Trivedi S, et al. HPV16E6 antibodies are sensitive for HPV-driven oropharyngeal cancer and associated with recurrence. Cancer 2017; 123: 4382-90. [http://dx.doi.org/10.1002/cncr.30966] [PMID: 28950407]
- [167] Holzinger D, Wichmann G, Baboci L, et al. Sensitivity and specificity of antibodies against HPV16 E6 and other early proteins for the detection of HPV16-driven oropharyngeal squamous cell carcinoma. Int J Cancer 2017; 140(12): 2748-57. [http://dx.doi.org/10.1002/ijc.30697] [PMID: 28316084]
- [168] Busch CJ, Hoffmann AS, Viarisio D, et al. Detection of stage I HPV-driven oropharyngeal cancer in asymptomatic individuals in the Hamburg City Health Study using HPV16 E6 serology – A proof-o--concept study. EClinicalMedicine 2022; 53: 101659. [http://dx.doi.org/10.1016/j.eclinm.2022.101659]
- [169] Lehtinen M, Simen-Kapeu A, Toriola A, Dillner J. Oropharyngeal and tonsillar cancers caused by human papillomavirus types 16/18 – A new indication for HPV16/18 vaccination. HPV Today 2011; 22: 7-8.
- [170] Lehtinen M, Pawlita M, Zumbach K, *et al.* Evaluation of antibody response to human papillomavirus early proteins in women who developed cervical cancer 1-20 years later. Am J Obstet Gynecol 2003; 188: 49-55.
 [http://dx.doi.org/10.1067/mob.2003.98] [PMID: 12548195]

[171] Kreimer AR, Brennan P, Lang Kuhs KA, *et al.* Human papillomavirus antibodies and future risk of anogenital cancer: a nested case-control study in the European prospective investigation into cancer

- anogenital cancer: a nested case-control study in the European prospective investigation into c and nutrition study. J Clin Oncol 2015; 33(8): 877-84. [http://dx.doi.org/10.1200/JCO.2014.57.8435] [PMID: 25667279]
- [172] Greenland S. Concepts and pitfalls in measuring and interpreting attributable fractions, prevented fractions, and causation probabilities. Ann Epidemiol 2015; 25(3): 155-61. [http://dx.doi.org/10.1016/j.annepidem.2014.11.005] [PMID: 25498918]
- [173] Ang KK, Harris J, Wheeler R, et al. Human papillomavirus and survival of patients with oropharyngeal cancer. N Engl J Med 2010; 363(1): 24-35. [http://dx.doi.org/10.1056/NEJMoa0912217] [PMID: 20530316]
- [174] Nygård M, Aagnes B, Bray F, Møller B, Mork J. Population-based evidence of increased survival in human papillomavirus-related head and neck cancer. Eur J Cancer 2012; 48(9): 1341-6. [http://dx.doi.org/10.1016/j.ejca.2012.03.014] [PMID: 22516210]
- [175] Ahn J, Peng S, Hung CF, Roden RBS, Best SR. Prophylactic immunization with human papillomavirus vaccines induces oral immunity in mice. Laryngoscope 2018; 128(1): E16-20. [http://dx.doi.org/10.1002/lary.26772] [PMID: 28868617]
- [176] Petäjä T, Pedersen C, Poder A, et al. Long-term persistence of humoral and mucosal immune response to HPV-16/18 ASO4-adjuvanted vaccine in girls & young women. Int J Cancer 2011; 129: 2147-57. [http://dx.doi.org/10.1002/ijc.25887] [PMID: 21190190]
- [177] Pinto LA, Kemp TJ, Torres BN, et al. Quadrivalent human papillomavirus (HPV) vaccine induces

HPV-specific antibodies in the oral cavity: Results from the mid-adult male vaccine trial. J Infect Dis 2016; 214(8): 1276-83. [http://dx.doi.org/10.1093/infdis/jiw359] [PMID: 27511896]

- [178] Herrero R, Quint W, Hildesheim A, *et al.* Reduced prevalence of oral human papillomavirus (HPV) 4 years after bivalent HPV vaccination in a randomized clinical trial in Costa Rica. PLoS One 2013; 8(7): e68329.
 [http://dx.doi.org/10.1371/journal.pone.0068329] [PMID: 23873171]
- [179] Beachler DC, Kreimer AR, Schiffman M, et al. Multisite HPV16/18 vaccine efficacy against cervical, anal and oral HPV infection. J Natl Cancer Inst 2016; 108(1): djv302. b
 - [http://dx.doi.org/10.1093/jnci/djv302] [PMID: 26467666]
- [180] Lehtinen M, Apter D, Eriksson T, et al. Effectiveness of AS04-adjuvanted human papillomavirus (HPV) type 16/18 vaccine in reducing oropharyngeal HPV infections in young females – results from a community-randomized trial. Int J Cancer 2020; 147: 170-4. [http://dx.doi.org/10.1002/ijc.32791] [PMID: 31736068]
- [181] Joura EA, Garland SM, Paavonen J, et al. Effect of the human papillomavirus (HPV) quadrivalent vaccine in a subgroup of women with cervical and vulvar disease: retrospective pooled analysis of trial data. BMJ 2012; 344(mar27 3): e1401. [http://dx.doi.org/10.1136/bmj.e1401] [PMID: 22454089]
- [182] Swedish KA, Factor SH, Goldstone SE. Prevention of recurrent high-grade anal neoplasia with quadrivalent human papillomavirus vaccination of men who have sex with men: a nonconcurrent cohort study. Clin Infect Dis 2012; 54(7): 891-8. [http://dx.doi.org/10.1093/cid/cir1036] [PMID: 22291111]
- [183] Kang WD, Choi HS, Kim SM. Is vaccination with quadrivalent HPV vaccine after loop electrosurgical excision procedure effective in preventing recurrence in patients with high-grade cervical intraepithelial neoplasia (CIN2–3)? Gynecol Oncol 2013; 130(2): 264-8. [http://dx.doi.org/10.1016/j.ygyno.2013.04.050] [PMID: 23623831]
- [184] Hildesheim A, Gonzalez P, Kreimer AR, et al. Impact of human papillomavirus (HPV) 16 and 18 vaccination on prevalent infections and rates of cervical lesions after excisional treatment. Am J Obstet Gynecol 2016; 215:212: e1-e15.
- [185] Ghelardi A, Parazzini F, Martella F, et al. SPERANZA project: HPV vaccination after treatment for CIN2+. Gynecol Oncol 2018; 151(2): 229-34. [http://dx.doi.org/10.1016/j.ygyno.2018.08.033] [PMID: 30197061]
- [186] Chaturvedi AK, Graubard BI, Broutian T, et al. Effect of prophylactic human papilloma-virus vaccination on oral HPV infections among young adults in the United States. J Clin Oncol 2018; 36(3): 262-7.
 [http://dx.doi.org/10.1200/JCO.2017.75.0141] [PMID: 29182497]
- [187] Baussano I, Bray F. Modelling cervical cancer elimination. Lancet Public Health 2019; 4(1): e2-3. [http://dx.doi.org/10.1016/S2468-2667(18)30189-0] [PMID: 30291039]
- [188] Pérez-Quintanilla M, Méndez-Martínez R, Vázquez-Vega S, et al. High prevalence of human papillomavirus and European variants of HPV 16 infecting concomitantly to cervix and oral cavity in HIV positive women. PLoS One 2020; 15(4): e0227900. [http://dx.doi.org/10.1371/journal.pone.0227900] [PMID: 32320400]
- [189] Laban S, Gangkofner DS, Holzinger D, et al. Antibody responses to cancer antigens identify patients with a poor prognosis among HPV-positive and HPV-negative head and neck squamous cell carcinoma patients. Clin Cancer Res 2019; 25(24): 7405-12. [http://dx.doi.org/10.1158/1078-0432.CCR-19-1490] [PMID: 31444248]
- [190] Gangkofner DS, Holzinger D, Schroeder L, et al. Patterns of antibody responses to nonviral cancer antigens in head and neck squamous cell carcinoma patients differ by human papillomavirus status. Int J Cancer 2019; 145(12): 3436-44.

[http://dx.doi.org/10.1002/ijc.32623] [PMID: 31407331]

- [191] Kreimer AR, Ferreiro-Iglesias A, Nygard M, et al. Timing of HPV16-E6 antibody seroconversion before OPSCC: findings from the HPVC3 consortium. Ann Oncol 2019; 30(8): 1335-43. [http://dx.doi.org/10.1093/annonc/mdz138] [PMID: 31185496]
- [192] Rautava J, Willberg J, Louvanto K, et al. Prevalence, genotype distribution and persistence of human papillomavirus in oral mucosa of women: a six-year follow-up study. PLoS One 2012; 7(8): e42171. [http://dx.doi.org/10.1371/journal.pone.0042171] [PMID: 22952591]
- [193] Mena M, Taberna M, Monfil L, et al. Might oral human papillomavirus (HPV) infection in healthy individuals explain differences in HPV-attributable fractions in oropharyngeal cancer? A systematic review and meta-analysis. J Infect Dis 2019; 219(10): 1574-85. [http://dx.doi.org/10.1093/infdis/jiy715] [PMID: 30590684]
- [194] Mattox AK, D'Souza G, Khan Z, et al. Comparison of next generation sequencing, droplet digital PCR, and quantitative real-time PCR for the earlier detection and quantification of HPV in HPVpositive oropharyngeal cancer. Oral Oncol 2022; 128: 105805. [http://dx.doi.org/10.1016/j.oraloncology.2022.105805] [PMID: 35334415]
- [195] Bhambhani C, Sandford E, Haring CT, et al. Development of a high-performance multi-probe droplet digital PCR assay for high-sensitivity detection of human papillomavirus circulating tumor DNA from plasma. Oral Oncol 2023; 143: 106436. [http://dx.doi.org/10.1016/j.oraloncology.2023.106436] [PMID: 37269557]
- [196] Sichero L, Gonçalves MG, Bettoni F, et al. Detection of serum biomarkers of HPV-16 driven oropharynx and oral cavity cancer in Brazil. Oral Oncol 2024; 149: 106676. [http://dx.doi.org/10.1016/j.oraloncology.2023.106676] [PMID: 38150987]
- [197] Harper DM, Nieminen P, Paavonen J, Lehtinen M. Cervical cancer incidence can increase despite HPV vaccination. Lancet Infect Dis 2010; 10(9): 594-5. [http://dx.doi.org/10.1016/S1473-3099(10)70182-1] [PMID: 20797640]
- [198] Qendri V, Bogaards JA, Baussano I, Lazzarato F, Vänskä S, Berkhof J. The cost-effectiveness profile of sex-neutral HPV immunisation in European tender-based settings: a model-based assessment. Lancet Public Health 2020; 5(11): e592-603. [http://dx.doi.org/10.1016/S2468-2667(20)30209-7] [PMID: 33120045]
- [199] Lehtinen M, Butt J, Gray P, et al. HPV16 E6 antibody indicated risk of oropharyngeal cancer increase by calendar time. Int J Cancer 2023; 153: 1311-5. [http://dx.doi.org/10.1002/ijc.34614]

Specific Webpage for the Lectures

Below are the specific web page for the lectures on which this book is based.

Chapter 1 Etiological Studies on Cervical Neoplasia

Statens Serum Institute, Copenhagen, Denmark (Nov 29, 2023)

Chapter 2 Safety, Immunogenicity and Efficacy of HPV Vaccines

Cambridge University, Cambridge, UK (Oct 4, 2023)

Chapter 3 Impact of Different HPV Vaccination Strategies

McGill University, Montreal, Canada (Oct 11, 2023)

Chapter 4 Vaccination and HPV Type-replacement

Harvard University, USA (Oct 6, 2023) and Montreal University Canada (Oct 10, 2023)

Chapter 5 Screening and Triage of Cervical Neoplasia in HPV Vaccinated Women

(Amsterdam Free University, Amsterdam, The Netherlands (Oct 2, 2023)

Chapter 6 Screening of HPV-associated Oropharyngeal Cancers

(Deutsches Krebsforschungszentrum, Heidelberg, Germany (Oct 12, 2023)

Videotaped replicas of the lectures and power point slides can be found at www.rokotiitus.net

SUBJECT INDEX

A

Accuracy, improved prognostic 65 Acid, nucleic 56 Acquired 10, 13, 61 HPV6 infection 10 HPV16 infections 13, 61 Active smokers 3 Adolescent(s) 21, 27, 31, 34, 38, 40, 48, 50, 51, 52, 53, 57 early 21, 34, 48, 50, 51, 52, 53, 57 Finnish females 27 population 31, 38, 40 Adolescent girls 18, 31 early 31 AI-simulations on exposure associations 2 Analyses 11, 38, 39, 46, 59, 63 epidemiological 39, 46 high-throughput 38 methylation 59 multivariante 11 post hoc 63 Anogenital cancers 9, 61, 62 neoplasia 61, 62 non-cervical 9 Antagonistic interactions 8, 10 Antibodies 22, 23, 27, 32, 54, 57, 58, 65, 68 cervical 57 total serum anti-HPV 58 vaccine-induced 54 Antibody levels 18, 19, 22, 54, 55, 56, 58 induced 19 vaccine-induced 54 Antibody responses 18, 22, 23, 55, 63 vaccine-induced 22 Approaches, epidemiological 41, 45, 46 Arm 20, 25, 31, 33, 35, 37, 38, 39, 41, 44, 45, 47, 48, 50, 51, 52 control vaccine 25 frequent screening 50 screened 51, 52 Artificial intelligence 1, 2

Assay, pseudovirion-based neutralization 58 Autoimmune disorders 21

B

Becton Dickinson Onclarity test 58 Beta-diversity estimation 43 Birth cohorts 27, 28, 29, 30, 31, 34, 36, 37, 40, 41, 42, 45, 46, 48, 56, 57 consecutive 41 Bivalent HPV 18, 21, 22, 57 vaccines 18, 21, 22, 57 Bivalent vaccine 19, 22, 23, 24, 26, 31, 34, 46, 55

С

Cancer 1, 8, 9, 16, 30, 48, 64 common 48 concomitant anogenital 64 esophageal 9 incidence data 16 micro-invasive 8 ovarian 8 Cases 59, 60, 67 annual 60 incident OPC 67 vaccinated SIL 59 Cellular 13, 57 nuclear antigen 13 risk genes 57 Cervical 1, 2, 10, 11, 13, 57, 60, 62 adenocarcinomas 60 carcinogenesis 2, 10, 11 carcinogensis 11 carcinoma 62 cytological changes 1 neoplasia, developing 13 precancers 57 Cervical cancer 1, 2, 3, 4, 7, 8, 9, 10, 11, 12, 13, 14, 15, 20, 48, 49, 53, 61 incidence of invasive 3, 4

Matti Lehtinen All rights reserved-© 2024 Bentham Science Publishers

86

Subject Index

association 13, 14 ATLAS 12 development 9, 11 etiology 12, 13 in Finland 1 incidence 1, 3, 4, 8, 11, 12, 13, 49 incidence ATLAS 7 risk genes 53 Cervicovaginal cells 59 Cervix 9, 23, 63, 65 uterine 23, 63, 65 Chlamydia 1, 14, 15, 30 trachomatis IgG-class 15 Chronic HBV infection 55 Clostridium tetani 19 Cohorts 8, 9, 10, 38, 57, 59, 62 national 9 population-based Nordic 10 Colposcopy-directed biopsy 50 Commercial ELISA 15 Community-level HPV types b-diversity distribution 44 Control 24, 25, 26, 29, 32, 33, 35, 36, 41, 43, 44, 45, 58, 59, 63, 64, 66 age-aligned 24, 25 cluster-randomized 25 communities 33, 35, 36, 43, 44, 63 residence-aligned 66 vaccine communities 41 Coronavirus vaccination 19 Countries, vaccination-prone 26 COVID-19 epidemic 56 Crohn's disease 21 Cross-immunity 42, 46 -derived competition 42 naturally-derived NVT 42 Cumulative incidence 4, 6, 7, 8, 15, 29, 41, 49, 52 CVT findings 63 Cytological 50, 51, 56, 57, 59 information 51 screening 50 serial 59

D

Depletion, serology-documented significant 42 Digital droplet PCR assays 68 Diseases 1, 3, 15, 19, 21, 65

Human Papillomavirus Vaccination and Screening 87

celiac 21 infectious 19 inflammatory bowel 21 DNA 2, 46, 58, 59, 64, 65 cervical 59 -extraction 58 positivity, oral HPV 65 Screening 65 virus 46

Е

Efficacy of human papillomavirus vaccines 15, 23 ELISA methods 15 Epidemiological 8, 13, 14, 43 evidence 8 research 13, 14 tools 43 Epitopes, repetitive 19 Etiological research 2, 3 Evidence hierarchy, causal medical 2 Exposure 2, 3, 8, 13, 14, 15, 18, 19, 25, 50, 66 carcinogenic 3 causal HPV16 14 heterogenous biotic 13 population-based 14

F

Female(s) 9, 11, 28, 31, 36, 49, 66 fertile-aged 49 lung cancer 9 non-vaccinated 28 screened 66 unscreened 66 unvaccinated 36 young adult 31 Fertile-aged Finnish women 3, 8, 11, 13, 49, 50 Fertility endpoints 27 Fetal deaths 49 Finnish 8, 10, 11, 12, 15, 16, 21, 22, 23, 24, 25, 27, 28, 30, 34, 36, 37, 39, 40, 44, 49, 53, 57, 65, 68 adolescents 30 bone marrow donor registry 16 cancer registry (FCR) 10, 25, 28, 36, 37, 57,68 health care 65

Matti Lehtinen

maternity cohort (FMC) 8, 15, 16, 22, 68 mobile clinic health survey 49 parliament 68 pioneering 23 Finnish females 3, 12, 15, 16, 48, 49, 65 fertile-aged 3, 12, 16 pregnant 15 young adult 49 Finnish population 11, 13, 40 fertile-aged 11

G

Gender-neutral 29, 31, 32, 33, 34, 35, 36, 39, 40, 41, 43, 44, 56, 64 arm 31, 35, 36, 39, 41, 44 HPV vaccination 29, 31, 32, 34, 40, 56 vaccination 33, 34, 35, 43, 56, 64 Genital 29, 30, 38, 40, 41, 43 herpes 30 HPV types 29, 38, 40, 41, 43 Genito-oral transmission chains, breaking 64

Η

HBV 19, 21, 37, 55 antibody levels 19 -vaccinated women 37 vaccines 21, 55 Health 27. 34. 50 care facilities 27, 34 impact, public 50 registry, consent-based 27 Helsinki HPV 19, 30 symposium 30 workshop 19 Helsinki metropolitan region 20, 29, 34, 36, 48, 51 Hepatitis B-virus (HBV) 19, 27, 29, 32, 33, 55 vaccination 55 vaccine 27, 33 Herd immunity 39 Herpes simplex virus (HSV) 1, 2, 5, 15, 42, 46 Herpesviruses 13 High-throughput PBNA test 58 HIV interventions 30 HLA 1, 2, 11, 12, 16 alleles 16 allotypes 16 genotypes 11

prevalence data 16 risk genotypes 12 Hospital discharge register 27 Host-pathogen interaction 42 HPV 20, 25, 32, 39, 42, 47, 50, 53, 56, 59, 62, 63,64 and cytological screening 50 antigens 63 circulating 39 -derived lesions 56 epidemiology 42 high-risk 59 interactions 47 -negative OPC cases 64 -positive OPC cases 64 -related cancer 20 screening intervention 53 serology and HPV DNA 62 transmission 32, 56 transmitted 25 transmitting 32 HPV-associated 27, 28, 60, 61, 62, 63, 62, 64, 66,67 cancers 27, 28, 60, 64 head and neck cancers 60, 61 OPC incidence 61 OPCs 61, 63, 67 **OPSCC 62** oropharyngeal cancer by screening 64 oropharyngeal cancer epidemics 66 HPV-dependent 50, 56 cervical screening 56 screening method 50 HPV DNA 58, 61, 62, 64, 65, 66, 68 lesional 58 -detection 61 tests 66 HPV-independent 48, 55 cervical cancer risk genes 48 indicators 55 HPV infection 13, 25, 30, 37, 57, 63, 64, 66 acquired 64 cervical 25, 57 genital 30 oral 66 transmitted 30 HPV type 45, 47 community prevalence 45 distributions by arm 47 HPV type-replacement 40, 41, 42, 43, 45, 47

Subject Index

vaccination-induced 43 HPV-vaccinated 31, 50, 54, 55 and control arms 31 Finnish women 55 healthy women 54 woman 50 HPV vaccination 29, 30, 31, 32, 33, 35, 36, 38, 43, 50, 56, 64, 66 communities 29, 50 HPV vaccination programs 31, 40, 49, 56 implementing 40 HPV vaccine(s) 19, 30, 50 adjuvanted 19 efficacy 30 HPV169, 10, 11, 62 and OPC association 62 and prostate cancer 9 antibody adjustment 11 -associated relative risk 10 in cervical cancer 10 HPV16 infection 9, 60, 61, 63 carcinogenic 63 HPV16 infection and cervical cancer 49, 61 epidemics 49 HSIL/AIS lesions 55, 57 cervical precancerous 57 in HPV-vaccinated women 55 HSIL occurrence 52 Human papillomavirus(s) 1, 2, 9, 19, 29, 48 -related oropharyngeal cancer 9 transmitted 29

I

IgG-class antibodies 15 Immune 12, 46, 63 cells 63 surveillance 12, 46 Immunity 19, 20, 40 induced protective 19 sterilizing 19 Immunogenicity of human papillomavirus vaccines 22 Infected cells 20 Infection(s) 6, 7, 9, 10, 11, 12, 13, 15, 18, 22, 30, 48, 49, 54, 68 antagonises 13 cervical 48 congenital 22, 68 venereal 30

Human Papillomavirus Vaccination and Screening 89

Influenza virus vaccination 19 Insulin-dependent diabetes mellitus 21 Invasive 3, 4, 18, 23, 25, 26, 28, 49, 67 cancers 28 cervical cancer 3, 4, 18, 23, 25, 26, 49, 67

J

Junior, municipal 34 Juvenile idiopathic arthritis 21

K

Koch's postulates 13

L

Learning algorithms 13, 14 contemporary epidemiological approaches vs.deep 13 Learning experience 40 Lesions 21, 24, 25, 48, 50, 56, 57, 62, 64 associated 57 cervical 21, 48, 50, 56 cervical squamous cell intraepithelial 64 high-grade squamous cervical intraepithelial 48, 50 occult oropharyngeal 62 Life-time sexual partners 3 Luciferase activity 58 Luminex tests 58

Μ

Machine learning performance 1 MALTIDOF 53, 58 assay 53 method 38 Mammalian cell-line 58 Mantel-Haenszel estimator 38 Mass vaccination 19, 31 Measure, preventative 2, 62 Median fluorescence intensity (MFI) 68 Medical 1, 27 birth registry 27 disease history 1 Medicine 1, 2, 3, 14, 45 contemporary 2 preventive 1

Membrane protein 15 Method, commercial ELISA 15 Methylation 53, 55, 57, 59 markers 55, 57, 59 marker analyses 59 status of cervical cancer risk genes 53 Micro-organisms, transmitted 1, 29 Microbial Serology 15 Middle-aged participants 64 Migration, in-country 48 Milder, cervical findings 50 MONICA networks 9

Ν

National 26, 29, 34, 37, 53, 56 cancer register 26 Finnish vaccination program 29 HPV vaccination program 53 vaccination program 34, 37, 56 Natural 11, 13 infection 11 vaccination 13 Neck cancers 60. 61 Neoplasia incidence 2, 25 cervical 2 Neoplastic development 20 Neural networks 14 New onset autoimmune diseases (NOADs) 18, 20, 21 Niche occupation 39 Nobel-prize winning 1, 14 hypothesis 14 vision 1 Non-vaccine 39, 42, 43, 53, 58 -covered HPV-types 42 type infections 42 Nordic biological specimen banks 8 NVT prevalence 42, 46

0

Occurrence NOADs 21 Oncogenesis 13 Oncogenic 9, 19, 48, 61 HPV infections 61 HPV16 infection 9 Oncogenicity 13 Oncoproteins 63 OPC 63, 67 diagnosis 63 epidemics 67 Oral cavity cancers 61 Oropharyngeal 9, 53, 60, 63, 64, 66, 67 HPV infections 64, 67 infections 63

P

Partners, sexual 3, 4, 24, 29, 30, 49 PATRICIA 18, 22, 23, 25, 27, 28 trial participants 22, 27, 28 trials 25, 28 PCR 39, 59 kit 59 Peptide, derived 15 Persistent HPV infections 35, 54, 55, 67 Pneumococcal vaccination programs 40 Popper-Hempel theory 14 Population 10, 12, 16, 29, 30, 35, 41, 45, 46, 49, 63, 61, 63, 66, 67 fertile-aged 49, 61, 66 vaccinated 35 vaccination-prone 41 attributable fraction (PAF) 10, 63 Population-based 11, 21, 49, 66 health registry surveillance 21 nature 11, 66 Pap-screening of women 49 Post-vaccination 20, 21, 42 health registry linkages 20 HPV epidemiology 42 occurrence 21 Pre-term birth (PTB) 21, 49 Pregnant female population 16 Preterm birth rates, early 21 Prevalence 16, 29, 33, 36, 37, 38, 39, 40, 41, 64 rates 16, 37 reduction 36 Prevention, effective 1 Preventive measures 65 Procedure HPV genotyping, automatized 68 Prophylactic 10, 18, 19, 21, 39, 61, 63, 64 HPV vaccination 10, 21, 61, 63 vaccination 18, 19, 39, 64 Prostate cancer 9 Protection 25, 35, 40, 51, 59, 64 sustainable 64 Pseudovirion(s) 22, 28, 58

Matti Lehtinen

Subject Index

-based neutralisation assay (PBNA) 22, 58 cell-derived HPV 28 PsV infection 58 PTB-associated fetal 21, 49 death 21 mortality 49 Public health 3, 39 interventions, imaginable 39 measures, effective 3

Q

QIAsure methylation test 59 Quadrivalent 18, 19, 20, 22, 23, 24, 25, 26, 31, 55 and bivalent vaccines 18, 31 HPV vaccines 20 Quadrivalent vaccine 21, 22, 23, 25, 26, 30, 64 efficacies 23, 26 recipients 22, 23 yeast-derived 23

R

Randomized 20, 21 clinical trials 20 recipients 21 Randomized trial 10, 11, 24, 31, 34, 45, 48, 50, 51, 52, 56, 57, 64 findings 64 evidence 10, 11 community-based 34 arm 45 Relative 11, 41, 62 proportions 41 risk, increased 11, 62 Repository 15, 35, 68 personal identifier-based 15 Reproductive number, high 35 Risk 53, 56 sexual 56 gene methylation findings 53 Risk-taking behaviour 1, 2, 3, 16, 29, 30, 47, 49,66 sexual 2, 29, 30, 47, 49, 66

S

Safety 20, 50, 51

Human Papillomavirus Vaccination and Screening 91

arm 51 end-points 20 of human papillomavirus vaccines 20 of infrequent cervical screening of hpvvaccinated women 50 Scandinavian countries 24, 60 neighbouring 60 School-based gender-neutral HPV vaccination 60,67 Screen-detected neoplastic 21 Screening, sensitive cervical HPV 8 Sensitivity analysis 38, 47 Seroprevalence 6, 7, 15, 33, 36, 39, 49 communities 36 microbial 15 Serum samples, first-trimester pregnancy 27 Sexual 3, 32, 34 contacts 32 health education 34 risk-taking behavior 3 Sexual behaviour 1, 29, 30, 49 risk-taking 1, 29, 49 Shannon diversity distributions 45 Shannon's index 47 Smoking 1, 2, 3, 11, 13, 14, 16, 37 active 3 female 11 incidence 13 SPR estimates 46 Squamous 9, 53, 60, 65, 66 cell carcinoma 9, 60, 65, 66 intraepithelial lesion 53 Sustainable immune response 19 Swedish 12, 21, 23 adolescent 21 population 12

Т

Target population 31, 32, 66 vaccination-naïve 31 Tetanus toxoid vaccine 19 single protein 19 Toll-4 receptor agonist 22 Tongue cancer 60, 61, 64 Tonsillar 60, 62, 65 cancer 60, 62 squamous cell carcinoma (TSCC) 65 Trachomatis 1, 2, 4, 5, 10, 11, 13 chlamydia 1, 2, 5

Transformed cell 20 Transient HPV infections 35 Transmitted infections 1, 2, 34, 48 Type 1, 5, 10, 11, 15, 39, 42, 43, 44, 46, 53, 57 herpes simplex virus 1, 5, 15, 42, 46 low-risk HPV 10, 11 non-vaccine hrHPV 57 nonvaccine HPV 42, 53 vaccine-covered HPV 39, 43 vaccine-targeted 44

U

Ulcerative colitis 21 Unvaccinated 18, 35, 40, 41, 51, 55, 56 population 18, 40 women 35, 41, 51, 55, 56

V

Vacation, efficient 39 Vaccination arm 39 Vaccination communities 29, 39, 41, 42, 43 gender-neutral 39, 41 gender-neutral HPV 29 Vaccination coverage 36 gender-neutral 36 gender-neutral HPV 36 Vaccine 19, 22, 31 effectiveness, direct HPV 31 immunogenicity 19 -induced immune responses 19, 22 Viral load, reducing 20 Virus 1, 2, 63 herpes simplex 2 -transformed epithelial cells 63 Virus-like particles (VLPs) 15, 19, 63 derived 15 **VLP 19** -based HPV immunization 19 vaccines 19

W

Women 1, 3, 4, 8, 10, 22, 37, 51, 56, 67, 68 cross-vaccinated 51 fertile-aged 3, 4, 8, 67 marginalized 56 middle-aged 1 Matti Lehtinen

non-vaccinated 37

pregnant 10, 22, 68

"

This book represents the culmination of a lifetime of vigorous research work led by Dr Matti Lehtinen. It is structured in six logical chapters that describe the essential discoveries by his team over the years. As a molecular epidemiologist, the author has contributed to our understanding of human papillomavirus (HPV) infection as the central causal agent in cervical cancer. Through his innovative randomized controlled trials, Dr Lehtinen also addressed key questions related to cervical cancer prevention: how to assess HPV vaccination efficacy and how best to deploy it in populations. Through a combination of empirical research and mathematical modelling, his team also examined the potential for unintended consequences from HPV vaccination. The book delves into the complex issue of type replacement post-vaccination and provides cautionary messages for policymakers everywhere. His work goes beyond primary prevention. Building on the wealth of resources from his randomized controlled trials in Finland, Dr Lehtinen also shares his lessons about how cervical cancer screening must be optimally deployed in the post-vaccination era.

Throughout the book, readers will find evidence of Dr. Lehtinen's insightful and often provocative solutions to assist the world in eliminating cervical cancer. But he goes much further; his book also paints an optimistic outlook for the prevention of oral cancers caused by HPV.

The book is accompanied by abundant ancillary documentation, providing additional insights and data on the research methods, results, and implications. Whether the reader is a technically savvy cancer prevention researcher or a scientist from a different field, this book has enough material to inspire everyone.

Eduardo L. Franco

Distinguished James McGill Professor Department of Oncology, McGill University, Montreal, Quebec, Canada Editor-in-Chief, *Journal of the National Cancer Institute*