BLOCKCHAIN-ENABLED INTERNET OF THINGS APPLICATIONS IN HEALTHCARE: CURRENT PRACTICES AND FUTURE DIRECTIONS

VIA

Editors:

+

Shashi Kant Gupta Joanna Rosak-Szyrocka Amit Mittal Sanjay Kumar Singh Olena Hrybiuk

(())

Bentham Books

-

B

Blockchain-Enabled Internet of Things Applications in Healthcare: Current Practices and Future Directions

Edited by

Shashi Kant Gupta

Computer Science and Engineering Eudoxia Research University New Castle, USA

Joanna Rosak-Szyrocka

Department of Production Engineering and Safety Faculty of Management Czestochowa University of Technology Czestochowa, Poland

Amit Mittal

Research Programs, Chitkara University Punjab, India

Sanjay Kumar Singh

Amity Institute of Information Technology Uttar Pradesh Lucknow, India

&

Olena Hrybiuk

International Science & Technology University National Academy of Sciences Kyiv, Ukraine

Blockchain-Enabled Internet of Things Applications in Healthcare: Current Practices and Future Directions

Editors: Shashi Kant Gupta, Joanna Rosak-Szyrocka, Amit Mittal, Sanjay Kumar Singh and Olena Hrybiuk

ISBN (Online): 978-981-5305-21-0

ISBN (Print): 978-981-5305-22-7

ISBN (Paperback): 978-981-5305-23-4

© 2025, Bentham Books imprint.

Published by Bentham Science Publishers Pte. Ltd. Singapore. All Rights Reserved.

First published in 2025.

BENTHAM SCIENCE PUBLISHERS LTD.

End User License Agreement (for non-institutional, personal use)

This is an agreement between you and Bentham Science Publishers Ltd. Please read this License Agreement carefully before using the book/echapter/ejournal (**"Work"**). Your use of the Work constitutes your agreement to the terms and conditions set forth in this License Agreement. If you do not agree to these terms and conditions then you should not use the Work.

Bentham Science Publishers agrees to grant you a non-exclusive, non-transferable limited license to use the Work subject to and in accordance with the following terms and conditions. This License Agreement is for non-library, personal use only. For a library / institutional / multi user license in respect of the Work, please contact: permission@benthamscience.net.

Usage Rules

- 1. All rights reserved: The Work is the subject of copyright and Bentham Science Publishers either owns the Work (and the copyright in it) or is licensed to distribute the Work. You shall not copy, reproduce, modify, remove, delete, augment, add to, publish, transmit, sell, resell, create derivative works from, or in any way exploit the Work or make the Work available for others to do any of the same, in any form or by any means, in whole or in part, in each case without the prior written permission of Bentham Science Publishers, unless stated otherwise in this License Agreement.
- 2. You may download a copy of the Work on one occasion to one personal computer (including tablet, laptop, desktop, or other such devices). You may make one back-up copy of the Work to avoid losing it.
- 3. The unauthorised use or distribution of copyrighted or other proprietary content is illegal and could subject you to liability for substantial money damages. You will be liable for any damage resulting from your misuse of the Work or any violation of this License Agreement, including any infringement by you of copyrights or proprietary rights.

Disclaimer

Bentham Science Publishers does not guarantee that the information in the Work is error-free, or warrant that it will meet your requirements or that access to the Work will be uninterrupted or error-free. The Work is provided "as is" without warranty of any kind, either express or implied or statutory, including, without limitation, implied warranties of merchantability and fitness for a particular purpose. The entire risk as to the results and performance of the Work is assumed by you. No responsibility is assumed by Bentham Science Publishers, its staff, editors and/or authors for any injury and/or damage to persons or property as a matter of products liability, negligence or otherwise, or from any use or operation of any methods, products instruction, advertisements or ideas contained in the Work.

Limitation of Liability

In no event will Bentham Science Publishers, its staff, editors and/or authors, be liable for any damages, including, without limitation, special, incidental and/or consequential damages and/or damages for lost data and/or profits arising out of (whether directly or indirectly) the use or inability to use the Work. The entire liability of Bentham Science Publishers shall be limited to the amount actually paid by you for the Work.

General

2. Your rights under this License Agreement will automatically terminate without notice and without the

^{1.} Any dispute or claim arising out of or in connection with this License Agreement or the Work (including non-contractual disputes or claims) will be governed by and construed in accordance with the laws of Singapore. Each party agrees that the courts of the state of Singapore shall have exclusive jurisdiction to settle any dispute or claim arising out of or in connection with this License Agreement or the Work (including non-contractual disputes or claims).

need for a court order if at any point you breach any terms of this License Agreement. In no event will any delay or failure by Bentham Science Publishers in enforcing your compliance with this License Agreement constitute a waiver of any of its rights.

3. You acknowledge that you have read this License Agreement, and agree to be bound by its terms and conditions. To the extent that any other terms and conditions presented on any website of Bentham Science Publishers conflict with, or are inconsistent with, the terms and conditions set out in this License Agreement, you acknowledge that the terms and conditions set out in this License Agreement shall prevail.

Bentham Science Publishers Pte. Ltd. 80 Robinson Road #02-00 Singapore 068898 Singapore Email: subscriptions@benthamscience.net

CONTENTS

REWORD	
EFACE	
ST OF CONTRIBUTORS	
HAPTER 1 INTELLIGENT IOT HEALTHCARE APPLICATIONS POWERED BY	
OCKCHAIN TECHNOLOGY	
Babasaheb Jadhav, Mudassar Sayyed and Shashi Kant Gupta	
INTRODUCTION	
BACKGROUND AND RELATED WORK	
Security Concerns in IoT Devices	
The Blockchain Technologies Available and used in the Context of IoT	
The AI Technologies Applicable in the IoT	
CONVERGENCE OF IOT, BLOCKCHAIN, AND AI IN HEALTHCARE	
The Device & The Data Collected	
Secure the Collected Data	
Analysis, Reporting, and the Decision	
THE ARCHITECTURE	
Stages of IoT in Healthcare Environment	
Implementation Specifics	
The Blockchain Platform	
AI Models Available and Selecting the Most Appropriate	
The Communication Protocols in the IoT Environment	
Technical Requirements for the Proposed Architecture	
The Scalability	
The Key Performance Metrics	
Methodology for Testing and Benchmarking the System against Key Performe	
Metrics	
Implementation Steps for the Proposed Architecture	
Use Case of Decentralized Identity Management Systems	
CONCLUSION	
REFERENCES	
HAPTER 2 BLOCKCHAIN-POWERED IOT INNOVATIONS IN HEALTHCARE	
J. Mangaiyarkkarasi, J. Shanthalakshmi Revathy, Shashi Kant Gupta and Shilpa	
Mehta	
INTRODUCTION	
ENHANCING PATIENT PRIVACY AND DATA SECURITY	
Blockcain's Role in Securing Patient Data	
Decentralization	
Immutability	
Cryptography	
Permissioned Access	
Transparency	
Benefits of Using Blockchain for Patient Data Security and Privacy	
Protection against Data Breaches	
Enhanced Patient Control	
Data Integrity	
Streamlined Data Sharing	
Compliance with Privacy Regulations	

	Challenges and Considerations
	Integration
	Scalability
	User Experience
	Regulatory Compliance
	Recommendations for Incorporating Privacy-preserving Techniques
	Zero-Knowledge Proofs (ZKPs)
	Homomorphic Encryption
	Data Segmentation
	Technical Recommendations for Scalability
	Off-Chain Scaling Solutions
	Sharding
	Edge Computing
	Parallel Processing
	Caching Mechanisms
ю	APPLICATIONS IN HEALTHCARE: WEARABLES, MONITORING, AND SMAR
	UIPMENT
·	Wearables in Healthcare
	Health Monitoring
	Telemedicine
	Preventive Healthcare
	Clinical Trials
	Remote Patient Monitoring
	Early Intervention
	Cost Savings
	Improved Quality of Life
	Patient Empowerment
	Smart Medical Equipment
	Smart Infusion Pumps
	Connected Imaging Equipment
	IoT-Enabled Beds and Mattresses
	Smart Ventilators
	Consensus Mechanisms and their Implications
	Proof of Work (PoW)
	Proof of Stake (PoS)
	Delegated Proof of Stake (DPoS)
	Practical Byzantine Fault Tolerance (PBFT)
	Proof of Authority (PoA)
ov	Implications for Healthcare ERCOMING DATA INTEROPERABILITY CHALLENGES WITH BLOCKCHAIN
UV.	
	Data Interoperability Challenges in Healthcare
	Fragmented Systems
	Data Security and Privacy
	Lack of Patient Control
	Inefficient Processes
	How Blockchain Overcomes Data Interoperability Challenges
	Decentralized Data Sharing
	Immutable Records
	Fine-Grained Access Control Data Security through Cryptography

Standardized Data Formats	
Auditability and Transparency	
Benefits and Future Prospects	
Improved Patient Care	
Reduced Costs	
Patient Empowerment	
Data Standardization	
EMPOWERING PATIENTS AND IMPROVING CLINICAL TRIALS WITH SMART	50
CONTRACTS	37
Understanding Smart Contracts	
Empowering Patients	
Informed Consent	
Data Ownership and Control	
Automatic Compensation	
Transparent Protocols	
Improving Data Transparency	
Immutable Record Keeping	
Data Sharing	
Real-time Data	
Interoperability	
Streamlining Clinical Trial Management	
Reduced Administrative Burden	
Faster Data Analysis	
Enhanced Protocol Adherence	
Transparent Funding	
Challenges and Considerations	
Regulatory Compliance	
Integration	
Education and Training	
TRANSFORMING SUPPLY CHAIN MANAGEMENT AND DRUG TRACEABILITY .	
Challenges in Pharmaceutical Supply Chain Management	
Counterfeit Medications	
Data Fragmentation	
Regulatory Amenability	
Supply Chain Inefficiencies	
Transforming Supply Chain Management with Blockchain	
End-to-End Traceability	
Provenance Verification	
Data Integrity	
Real-time Visibility	
Reduced Counterfeits	
Automated Compliance	
Use Cases in the Pharmaceutical Supply Chain	
Serialization	
Temperature Monitoring	
Recall Management	
Regulatory Reporting	
Challenges and Considerations	
Integration	
Regulatory Compliance	
Data Privacy	

Interoperability	43
·	
Interoperability Real-World Case Studies of Blockchain in Healthcare Medicalchain Guardtime Medicalchain Simply/Vital Health Hashed Health HEALTHCARE Regulatory Frameworks in Healthcare HIPAA (Health Insurance Portability and Accountability Act) GDPR (General Data Protection Regulation) FDA (Food and Drug Administration) Regulations Regulatory Compliance in Clinical Trials Legal Challenges and Considerations Data Ownership and Control Cross-border Data Sharing Smart Contracts and Legal Valdity Liability and Accountability Intellectual Property and Patents Ethical Considerations Privacy and Informed Consent Data Security Transparency and Accountability Equity and Access Benefits of Legal and Regulatory Compliance Patient Trust Data Integrity Risk Mitigation Interope	
HEALTHCARE	45
Regulatory Frameworks in Healthcare	46
HIPAA (Health Insurance Portability and Accountability Act)	
Benefits of Legal and Regulatory Compliance	
	54
Combining Encryptea CID and Public Data Packet	

59
59
59
60
69
81
85
85
ONS
RT

STAKEHOLDERS AND NGOS' INTEREST103ROLE OF POLICIES AND GOVERNANCE105CHALLENGES107FUTURE PERSPECTIVES108CONCLUSION111REFERENCES111CHALTENCESIIIICHAPTER 6 STRIDE-BASED THREAT MODELING FOR BLOCKCHAIN-BASEDHEALTHCARE SUPPLY CHAIN MANAGEMENT SYSTEMIII4S.V. Harish, K. Chandrasekaran, Rathnamma, Usha Divakarla and Venkata RamanaINTRODUCTIONIII4Blockchain TechnologySmart Contracts116Supply Chain Management Systems116STRIDE Framework117Blockchain in Supply Chain Management117Blockchain Threat Types120Privacy Threat Types120Privacy Threat Types120Privacy Threat Types121GAP ANALYSISDISCUSSIONI22Fundamental Level123Cryptographic Primitives124	Healthcare Decision-Making Based on Data	
Working Together and Interoperability 98 SOCIAL IMPACT ON FARMERS AND HEALTHCARE SECTOR 99 ROLE OF THE INDUSTRIAL SECTOR IN SUSTAINABLE DEVELOPMENT 101 STAKEHOLDERS AND GOVERNANCE 103 ROLE OF POLICIES AND GOVERNANCE 105 CHALLENGES 107 FUTURE PERSPECTIVES 108 CONCLUSION 111 CALLENGES 111 CHAPTER 6 STRIDE-BASED THREAT MODELING FOR BLOCKCHAIN-BASED 114 HEALTHCARE SUPPLY CHAIN MANAGEMENT SYSTEM 114 S.V. LARISK, K. Chandrasekaran, Rathnamma, Usha Divakarla and Venkata Ramana INTRODUCTION 114 Blockchain Technology 115 Smart Contracts 116 Supply Chain Management Systems 116 Supply Chain Management Systems 118 LITERATURE REVIEW 118 Blockchain Thereat Types 120 Privacy Threat Types 121 GAP ANALYSIS 122 Fundamental Level 123 Consensus 124 Protocol Level 125 Modes 126 Madaed Level	Reduced Expenses and Enhanced Efficiency	
SOCIAL IMPACT ON FARMERS AND HEALTHCARE SECTOR 99 ROLE OF THE INDUSTRIAL SECTOR IN SUSTAINABLE DEVELOPMENT 101 STAKEHOLDERS AND NGOS' INTEREST 103 ROLE OF POLICIES AND GOVERNANCE 105 CHALLENCES 107 FUTURE PERSPECTIVES 106 CONCLUSION 111 REFERENCES 111 CHAPTER 6 STRIDE-BASED THREAT MODELING FOR BLOCKCHAIN-BASED 114 S.V. Harish, K. Chandrasekaran, Rathnamma, Usha Divakarla and Fenkata Ramana INTRODUCTION 114 Blockchain Technology 115 Smart Contracts 116 Supply Chain Management Systems 116 Supply Chain Management Systems 116 Supply Chain Management Systems 117 Contributions 118 Blockchain Supply Chain Management 117 Contributions 118 Blockchain Threat Types 120 Privacy Threat Types 121 GAP ANALYSIS 122 DISCUSSION 122 Fundamental Level 123 Cryptographic Primitives 124 Data Structures	Simplified Obtaining Funds	
ROLE OF THE INDUSTRIAL SECTOR IN SUSTAINABLE DEVELOPMENT 101 STAKEHOLDERS AND NGOS' INTEREST 103 ROLE OF POLICIES AND GOVERNANCE 105 CHALLENCES 107 FUTURE PERSPECTIVES 108 CONCLUSION 111 REFERENCES 111 CHAPTER 6 STRIDE-BASED THREAT MODELING FOR BLOCKCHAIN-BASED 114 HEALTHCARE SUPPLY CHAIN MANAGEMENT SYSTEM 114 S.V. Harish, K. Chandrasekaran, Rathnamma, Usha Divakarla and Venkata Ramana INTRODUCTION 114 Blockchain Technology 115 Smart Contracts 116 SUPJly Chain Management Systems 116 STRIDE Framework 117 Blockchain in Supply Chain Management 117 Blockchain Threat Types 120 Privacy Threat Types 121 GAP ANALYSIS 122 Judamental Level 123 Consensus 124 Protocol Level 125 Consensus 126 Madamental Level 123 Consensus 124 Protocol Level 125 <t< td=""><td>Working Together and Interoperability</td><td></td></t<>	Working Together and Interoperability	
STAKEHOLDERS AND NGOS' INTEREST103ROLE OF POLICIES AND GOVERNANCE105CHALLENCES107FUTURE PERSPECTIVES108CONCLUSION111REFERENCES111REFERENCES111CHAPTER 6 STRIDE-BASED THREAT MODELING FOR BLOCKCHAIN-BASEDHEALTHCARE SUPPLY CHAIN MANAGEMENT SYSTEM114S.V. Harish, K. Chandrasekaran, Rathnamma, Usha Divakarla and Venkata Ramana114Blockchain Technology115Smart Contracts116Supply Chain Management Systems116STRIDE Framework117Contributions118LITERATURE REVIEW118Blockchain Threat Types120Privacy Threat Types121GAP ANALVSIS122DISCUSSION122Fundamental Level123Cryptographic Primitives124Data Structures125Block Creation125Infrastructure Level126Advanced Level127Advanced Level128Fundamental Level126Advanced Level127Apoling (S)127RESEARCH METHODOLOGY127RESEARCH METHODOLOGY127Advanced Level128Fundamental: Cryptographic Primitives129Advanced Level:129Advanced Level:129Advanced Level:129Advanced Level:129Advanced Level:129Advanced Level:129Advanced Level: <t< th=""><th>SOCIAL IMPACT ON FARMERS AND HEALTHCARE SECTOR</th><th></th></t<>	SOCIAL IMPACT ON FARMERS AND HEALTHCARE SECTOR	
ROLE OF POLICIES AND GOVERNANCE 105 CHALLENGES 107 FUTURE PERSPECTIVES 108 CONCLUSION 111 REFERENCES 111 CHAPTER 6 STRIDE-BASED THREAT MODELING FOR BLOCKCHAIN-BASED 114 S.V. Harish, K. Chandrasekaran, Rathnamma, Usha Divakarla and Venkata 114 S.V. Harish, K. Chandrasekaran, Rathnamma, Usha Divakarla and Venkata 114 Blockchain Technology 115 Smart Contracts 116 STRIDE Framework 117 Blockchain in Supply Chain Management 117 Blockchain Threat Types 119 Sccurity Threat Types 120 Privacy Threat Types 121 GAP ANLYSIS 122 DiscUSSION 122 Fundamental Level 123 Consensus 124 Protocol Level 125 Consensus 125 Smart Contracts 126 Advanced Level 125 Consensus 125 Consensus 126 Nodes 127 Redored Level 126	ROLE OF THE INDUSTRIAL SECTOR IN SUSTAINABLE DEVELOPMENT	101
CHALLENGES107FUTURE PERSPECTIVES108CONCLUSION111REFERENCES111CHAPTER 6 STRIDE-BASED THREAT MODELING FOR BLOCKCHAIN-BASEDHEALTHCARE SUPPLY CHAIN MANAGEMENT SYSTEM114S.V. Harish, K. Chandrasekaran, Rathnamma, Usha Divakarla and Venkata Ramana114INTRODUCTION114Blockchain Technology115Smart Contracts116Supply Chain Management Systems116Supply Chain Management Systems116StrIDE Framework117Blockchain in Supply Chain Management117Contributions118LITERATURE REVIEW118Blockchain Threat Types120Privacy Threat Types121GAP ANALYSIS122DISCUSSION122Fundamental Level123Cryptographic Primitives124Protocol Level125Block Creation125Infrastructures126Nodes125Modes126Nodes127Avanced Level128Fundamental: Cryptographic Primitives129Advanced Level126Advanced Level: Blockchain Extensions129Advanced Level: Blockchain Extensions130<	STAKEHOLDERS AND NGOS' INTEREST	103
FUTURE PERSPECTIVES 108 CONCLUSION 111 REFERENCES 111 CHAPTER 6 STRIDE-BASED THREAT MODELING FOR BLOCKCHAIN-BASED HEALTHCARE SUPPLY CHAIN MANAGEMENT SYSTEM 114 <i>S.V. Harish, K. Chandrasekaran, Rathnamma, Usha Divakarla</i> and Venkata 7 <i>Ramana</i> 114 Blockchain Technology 115 Smart Contracts 116 SUpply Chain Management Systems 116 STRIDE Framework 117 Blockchain in Supply Chain Management 117 Blockchain Threat Types 119 Security Threat Types 120 Privacy Threat Types 121 GAP ANALYSIS 122 DISCUSSION 122 Fundamental Level 123 Cryptographic Primitives 124 Data Structures 125 Block Creation 125 Consensus 125 Block Creation 125 Modes 126 Network 126 Advanced Level 126 Smart Contracts 127 A		
CONCLUSION111REFERENCES111CHAPTER 6 STRIDE-BASED THREAT MODELING FOR BLOCKCHAIN-BASEDHEALTHCARE SUPPLY CHAIN MANAGEMENT SYSTEM114S.V. Harish, K. Chandrasekaran, Rathnamma, Usha Divakarla and Venkata114Ramana114INTRODUCTION114Blockchain Technology115Smart Contracts116Supply Chain Management Systems116STRIDE Framework117Blockchain in Supply Chain Management117Contributions118LITERATURE REVIEW118Blockchain Threat Types120Privacy Threat Types120Privacy Threat Types122JISCUSSION122Fundamental Level123Coryptographic Primitives124Data Structures125Block Creation125Infrastructure Level126Nodes126Network126Advanced Level126Maret Contracts127APIs127RESEARCH METHODOLOGY127RESEARCH METHODOLOGY127Advanced Level: Blockchain Extensions129Advanced Level: Blockchain Extensions130Tampering (T)130		
REFERENCES 111 CHAPTER 6 STRIDE-BASED THREAT MODELING FOR BLOCKCHAIN-BASED 114 S.V. Harish, K. Chandrasekaran, Rathnamma, Usha Divakarla and Venkata 114 S.V. Harish, K. Chandrasekaran, Rathnamma, Usha Divakarla and Venkata 114 Blockchain Technology 115 Smart Contracts 116 Supply Chain Management Systems 116 STRIDE Framework 117 Blockchain in Supply Chain Management 117 Contributions 118 LITERATURE REVIEW 118 Blockchain Threat Types 120 Privacy Threat Types 121 GAP ANALYSIS 122 Fundamental Level 123 Cryptographic Primitives 124 Protocol Level 125 Block Creation 126 Natework 126 Nodes 126 Natework 126 Notevork 126 Natework 126 Natework 126 Natework 126 Ratework 126 Natework 126 Nodes </td <td></td> <td></td>		
CHAPTER 6 STRIDE-BASED THREAT MODELING FOR BLOCKCHAIN-BASED HEALTHCARE SUPPLY CHAIN MANAGEMENT SYSTEM 114 S.V. Harish, K. Chandrasekaran, Rathnamma, Usha Divakarla and Venkata Ramana INTRODUCTION 114 Blockchain Technology 115 Smart Contracts 116 Supply Chain Management Systems 116 STRIDE Framework 117 Blockchain in Supply Chain Management 117 Contributions 118 Blockchain Threat Types 119 Security Threat Types 120 Privacy Threat Types 122 DiSCUSSION 122 Fundamental Level 123 Cryptographic Primitives 124 Data Structures 125 Block Creation 125 Infrastructure Level 126 Nodes 126 Notes 127 Advanced Level 126 Structures 127 Advanced Level 126 Notes 126 Notes 127 Protocol Level 126 Notes 12		
HEALTHCARE SUPPLY CHAIN MANAGEMENT SYSTEM 114 S.V. Harish, K. Chandrasekaran, Rathnamma, Usha Divakarla and Venkata Ramana INTRODUCTION 114 Blockchain Technology 115 Smart Contracts 116 Supply Chain Management Systems 116 STRIDE Framework 117 Blockchain in Supply Chain Management 117 Blockchain Threat Types 118 LITERATURE REVIEW 118 Blockchain Threat Types 120 Privacy Threat Types 120 Privacy Threat Types 121 GAP ANALYSIS 122 DISCUSSION 122 Fundamental Level 123 Cryptographic Primitives 124 Data Structures 125 Block Creation 125 Modes 126 Notes 126 Network 126 Network 126 Notes 126 Notes 126 Network 126 Notes 127 Spoofing (S) 128 Funda	REFERENCES	111
S.V. Harish, K. Chandrasekaran, Rathnamma, Usha Divakarla and Venkata Ramana INTRODUCTION 114 Blockchain Technology 115 Smart Contracts 116 Supply Chain Management Systems 116 STRIDE Framework 117 Blockchain in Supply Chain Management 117 Contributions 118 LITERATURE REVIEW 118 Blockchain Threat Types 120 Privacy Threat Types 121 GAP ANALYSIS 122 Fundamental Level 123 Cryptographic Primitives 124 Data Structures 125 Block Creation 125 Block Creation 125 Merkareed Level 126 Network 126 Nodes 127 Spoofing (S) 128 Fundamental: Cryptographic Primitives 129	CHAPTER 6 STRIDE-BASED THREAT MODELING FOR BLOCKCHAIN-BASED	
Ramana114INTRODUCTION114Blockchain Technology115Smart Contracts116Supply Chain Management Systems116STRIDE Framework117Blockchain in Supply Chain Management117Contributions118LITERATURE REVIEW118Blockchain Threat Types120Privacy Threat Types120Privacy Threat Types121GAP ANALYSIS122DISCUSSION122Fundamental Level123Cryptographic Primitives124Data Structures124Protocol Level125Block Creation125Infrastructure Level126Nodes126Nodes126Nodes126Soofing (S)128Fundamental: Cryptographic Primitives129Advanced Level126Spoofing (S)128Fundamental: Cryptographic Primitives129Advanced Level:126Spoofing (S)128Fundamental: Cryptographic Primitives129Advanced Level:129Advanced Level:129Advanced Level:120Advanced Level:120Biockchain Extensions130Tampering (T)130	HEALTHCARE SUPPLY CHAIN MANAGEMENT SYSTEM	114
INTRODUCTION114Blockchain Technology115Smart Contracts116Supply Chain Management Systems116STRIDE Framework117Blockchain in Supply Chain Management117Contributions118LITERATURE REVIEW118Blockchain Threat Types120Privacy Threat Types120Privacy Threat Types121GAP ANALYSIS122DISCUSSION122Fundamental Level123Cryptographic Primitives124Data Structures125Block Creation125Consensus125Block Creation126Nodes126Nodes126Nodes126Smart Contracts127Advanced Level126Sporing (S)128Fundamental: Cryptographic Primitives126Advanced Level126Mattro Level126Mattro Level126Advanced Level126Advanced Level126Mattro Level126Advanced Level126Advanced Level127Advanced Level128Fundamental: Cryptographic Primitives128Fundamental: Cryptographic Primitives129Advanced Level: Shart Contracts129Advanced Level: Blockchain Extensions130Tampering (T)130	S.V. Harish, K. Chandrasekaran, Rathnamma, Usha Divakarla and Venkata	
Blockchain Technology115Smart Contracts116Supply Chain Management Systems117Blockchain in Supply Chain Management117Contributions118LITERATURE REVIEW118Blockchain Threat Types120Security Threat Types121GAP ANALYSIS122DISCUSSION122Fundamental Level123Cryptographic Primitives124Data Structures125Consensus125Block Creation125Infrastructure Level126Nodes126Nodes126Secord Contracts127Advanced Level126Mart Contracts127Advanced Level126Mart Contracts127Advanced Level126Mart Contracts127Advanced Level126Mart Contracts127Advanced Level128Fundamental: Cryptographic Primitives128Fundamental: Cryptographic Primitives129Advanced Level: Shart Contracts129Advanced Level: Shart Contracts129Advanced Level: Shart Contracts129Advanced Level: Blockchain Extensions130Tampering (T)130	Ramana	
Smart Contracts116Supply Chain Management Systems116STRIDE Framework117Blockchain in Supply Chain Management117Contributions118LITERATURE REVIEW118Blockchain Threat Types119Security Threat Types120Privacy Threat Types121GAP ANALYSIS122DISCUSSION122Fundamental Level123Cryptographic Primitives124Data Structures125Consensus125Block Creation125Block Creation125Structure Level126Network126Advanced Level127Advanced Level126Spoofing (S)127RESEARCH METHODOLOGY127Spoofing (S)128Fundamental: Cryptographic Primitives129Advanced Level: Smart Contracts129Advanced Level: Smart Contracts129Advanced Level: Smart Contracts129Advanced Level: Blockchain Extensions130Tampering (T)130	INTRODUCTION	114
Supply Chain Management Systems116STRIDE Framework117Blockchain in Supply Chain Management117Contributions118LITERATURE REVIEW118Blockchain Threat Types120Privacy Threat Types121GAP ANALYSIS122DISCUSSION122Fundamental Level123Cryptographic Primitives124Data Structures125Block Creation125Sconsensus125Block Creation125Infrastructure Level126Nodes126Network126Smart Contracts127Alvanced Level126Fundamental: Cryptographic Primitives126Nodes126Nodes126Network126Advanced Level126Spoofing (S)127RESEARCH METHODOLOGY128Fundamental: Cryptographic Primitives128Fundamental: Cryptographic Primitives129Advanced Level: Smart Contracts129Advanced Level: Smart Contracts130Tampering (T)130	Blockchain Technology	115
STRIDE Framework117Blockchain in Supply Chain Management117Contributions118LITERATURE REVIEW118Blockchain Threat Types120Security Threat Types120Privacy Threat Types121GAP ANALYSIS122DISCUSSION122Fundamental Level123Cryptographic Primitives124Data Structures124Protocol Level125Block Creation125Sodes126Network126Network126Smart Contracts127Advanced Level126Spoofing (S)127RESEARCH METHODOLOGY127Advanced Level: Sonart Contracts129Infrastructure: Nodes129Advanced Level: Size Size Size Size Size Size Size Size	Smart Contracts	116
Blockchain in Supply Chain Management117Contributions118LITERATURE REVIEW118Blockchain Threat Types119Security Threat Types120Privacy Threat Types121GAP ANALYSIS122DISCUSSION122Fundamental Level123Cryptographic Primitives124Data Structures125Block Creation125Consensus125Block Creation125Infrastructure Level126Nodes126Network126Advanced Level127APIs127RESEARCH METHODOLOGY127Spoofing (S)128Fundamental: Cryptographic Primitives128Fundamental: Cryptographic Primitives129Advanced Level: Smart Contracts129Advanced Level: Blockchain Extensions130Tampering (T)130	Supply Chain Management Systems	116
Contributions118LITERATURE REVIEW118Blockchain Threat Types119Security Threat Types120Privacy Threat Types121GAP ANALYSIS122DISCUSSION122Fundamental Level123Cryptographic Primitives124Data Structures125Block Creation125Shock Creation125Infrastructure Level126Nodes126Notes126Notes126Notes126Notes126Notes125Block Creation125ReseARCH METHODOLOGY127APIs127ReseARCH METHODOLOGY128Fundamental: Cryptographic Primitives128Fundamental: Cryptographic Primitives129Advanced Level: Smart Contracts129Advanced Level: Blockchain Extensions130Tampering (T)130	STRIDE Framework	117
LITERATURE REVIEW118Blockchain Threat Types119Security Threat Types120Privacy Threat Types121GAP ANALYSIS122DISCUSSION122Fundamental Level123Cryptographic Primitives124Data Structures124Protocol Level125Consensus125Block Creation125Infrastructure Level126Nodes126Network126Advanced Level126Spoofing (S)127RESEARCH METHODOLOGY127Spoofing (S)128Fundamental: Cryptographic Primitives128Fundamental: Cryptographic Primitives129Advanced Level: Smart Contracts129Advanced Level: Blockchain Extensions130Tampering (T)130	Blockchain in Supply Chain Management	117
Blockchain Threat Types119Security Threat Types120Privacy Threat Types121GAP ANALYSIS122DISCUSSION122Fundamental Level123Cryptographic Primitives124Data Structures124Protocol Level125Consensus125Block Creation125Infrastructure Level126Nodes126Network126Advanced Level127RESEARCH METHODOLOGY127Spoofing (S)128Fundamental: Cryptographic Primitives129Infrastructure: Nodes129Advanced Level: Smart Contracts129Advanced Level: Blockchain Extensions130Tampering (T)130	Contributions	118
Security Threat Types120Privacy Threat Types121GAP ANALYSIS122DISCUSSION122Fundamental Level123Cryptographic Primitives124Data Structures124Protocol Level125Consensus125Block Creation125Infrastructure Level126Nodes126Nodes126Smart Contracts127Advanced Level126Spoofing (S)128Fundamental: Cryptographic Primitives129Infrastructure: Nodes129Advanced Level: Smart Contracts129Advanced Level: Blockchain Extensions130Tampering (T)130	LITERATURE REVIEW	118
Privacy Threat Types121GAP ANALYSIS122DISCUSSION122Fundamental Level123Cryptographic Primitives124Data Structures124Protocol Level125Consensus125Block Creation125Infrastructure Level126Nodes126Network126Advanced Level126Spoofing (S)127APIs127Fundamental: Cryptographic Primitives128Fundamental: Cryptographic Primitives129Infrastructure: Nodes129Advanced Level: Smart Contracts129Advanced Level: Smart Contracts129Advanced Level: Blockchain Extensions130Tampering (T)130	Blockchain Threat Types	119
GAP ANALYSIS122DISCUSSION122Fundamental Level123Cryptographic Primitives124Data Structures124Protocol Level125Consensus125Block Creation125Infrastructure Level126Nodes126Network126Advanced Level127Spoofing (S)127RESEARCH METHODOLOGY127Spoofing (S)128Fundamental: Cryptographic Primitives129Infrastructure: Nodes129Advanced Level: Smart Contracts129Advanced Level: Blockchain Extensions130Tampering (T)130	Security Threat Types	120
DISCUSSION122Fundamental Level123Cryptographic Primitives124Data Structures124Protocol Level125Consensus125Block Creation125Infrastructure Level126Nodes126Network126Advanced Level126Smart Contracts127APIs127RESEARCH METHODOLOGY127Spoofing (S)128Fundamental: Cryptographic Primitives128Fundamental: Cryptographic Primitives129Infrastructure: Nodes129Advanced Level: Smart Contracts129Advanced Level: Blockchain Extensions130Tampering (T)130	Privacy Threat Types	121
Fundamental Level123Cryptographic Primitives124Data Structures124Protocol Level125Consensus125Block Creation125Infrastructure Level126Nodes126Network126Advanced Level126Spoofing (S)127RESEARCH METHODOLOGY127Spoofing (S)128Fundamental: Cryptographic Primitives129Infrastructure: Nodes129Advanced Level: Smart Contracts129Advanced Level: Blockchain Extensions130Tampering (T)130		
Cryptographic Primitives124Data Structures124Protocol Level125Consensus125Block Creation125Block Creation126Nodes126Nodes126Network126Advanced Level126Spoofing (S)127RESEARCH METHODOLOGY127Spoofing (S)128Fundamental: Cryptographic Primitives128Fundamental: Cryptographic Primitives129Infrastructure: Nodes129Advanced Level: Smart Contracts129Advanced Level: Smart Contracts129Advanced Level: Blockchain Extensions130Tampering (T)130		
Data Structures124Protocol Level125Consensus125Block Creation125Infrastructure Level126Nodes126Network126Advanced Level126Smart Contracts127APIs127RESEARCH METHODOLOGY127Spoofing (S)128Fundamental: Cryptographic Primitives128Fundamental: Cryptographic Primitives129Infrastructure: Nodes129Advanced Level: Smart Contracts129Advanced Level: Smart Contracts129Advanced Level: Blockchain Extensions130Tampering (T)130		
Protocol Level125Consensus125Block Creation125Infrastructure Level126Nodes126Nodes126Advanced Level126Smart Contracts127APIs127RESEARCH METHODOLOGY127Spoofing (S)128Fundamental: Cryptographic Primitives128Fundamental: Cryptographic Primitives129Infrastructure: Nodes129Advanced Level: Smart Contracts129Advanced Level: Smart Contracts129Advanced Level: Blockchain Extensions130Tampering (T)130	Cryptographic Primitives	
Consensus125Block Creation125Infrastructure Level126Nodes126Network126Advanced Level126Smart Contracts127APIs127RESEARCH METHODOLOGY127Spoofing (S)128Fundamental: Cryptographic Primitives128Fundamental: Cryptographic Primitives129Infrastructure: Nodes129Advanced Level: Smart Contracts129Advanced Level: Smart Contracts129Advanced Level: Blockchain Extensions130Tampering (T)130		
Block Creation125Infrastructure Level126Nodes126Network126Advanced Level126Smart Contracts127APIs127RESEARCH METHODOLOGY127Spoofing (S)128Fundamental: Cryptographic Primitives128Fundamental: Cryptographic Primitives129Infrastructure: Nodes129Advanced Level: Smart Contracts129Advanced Level: Blockchain Extensions130Tampering (T)130		
Infrastructure Level126Nodes126Network126Advanced Level126Smart Contracts127APIs127RESEARCH METHODOLOGY127Spoofing (S)128Fundamental: Cryptographic Primitives128Fundamental: Cryptographic Primitives129Infrastructure: Nodes129Advanced Level: Smart Contracts129Advanced Level: Smart Contracts130Tampering (T)130		
Nodes126Network126Advanced Level126Smart Contracts127APIs127RESEARCH METHODOLOGY127Spoofing (S)128Fundamental: Cryptographic Primitives128Fundamental: Cryptographic Primitives129Infrastructure: Nodes129Advanced Level: Smart Contracts129Advanced Level: Blockchain Extensions130Tampering (T)130		
Network126Advanced Level126Smart Contracts127APIs127RESEARCH METHODOLOGY127Spoofing (S)128Fundamental: Cryptographic Primitives128Fundamental: Cryptographic Primitives129Infrastructure: Nodes129Advanced Level: Smart Contracts129Advanced Level: Blockchain Extensions130Tampering (T)130		
Advanced Level126Smart Contracts127APIs127RESEARCH METHODOLOGY127Spoofing (S)128Fundamental: Cryptographic Primitives128Fundamental: Cryptographic Primitives129Infrastructure: Nodes129Advanced Level: Smart Contracts129Advanced Level: Blockchain Extensions130Tampering (T)130		
Smart Contracts127APIs127RESEARCH METHODOLOGY127Spoofing (S)128Fundamental: Cryptographic Primitives128Fundamental: Cryptographic Primitives129Infrastructure: Nodes129Advanced Level: Smart Contracts129Advanced Level: Blockchain Extensions130Tampering (T)130		
APIs127 RESEARCH METHODOLOGY 127Spoofing (S)128Fundamental: Cryptographic Primitives128Fundamental: Cryptographic Primitives129Infrastructure: Nodes129Advanced Level: Smart Contracts129Advanced Level: Blockchain Extensions130Tampering (T)130		
RESEARCH METHODOLOGY 127 Spoofing (S) 128 Fundamental: Cryptographic Primitives 128 Fundamental: Cryptographic Primitives 129 Infrastructure: Nodes 129 Advanced Level: Smart Contracts 129 Advanced Level: Blockchain Extensions 130 Tampering (T) 130		
Spoofing (S)128Fundamental: Cryptographic Primitives128Fundamental: Cryptographic Primitives129Infrastructure: Nodes129Advanced Level: Smart Contracts129Advanced Level: Blockchain Extensions130Tampering (T)130		
Fundamental: Cryptographic Primitives128Fundamental: Cryptographic Primitives129Infrastructure: Nodes129Advanced Level: Smart Contracts129Advanced Level: Blockchain Extensions130Tampering (T)130		
Fundamental: Cryptographic Primitives129Infrastructure: Nodes129Advanced Level: Smart Contracts129Advanced Level: Blockchain Extensions130Tampering (T)130		
Infrastructure: Nodes129Advanced Level: Smart Contracts129Advanced Level: Blockchain Extensions130Tampering (T)130		
Advanced Level: Smart Contracts 129 Advanced Level: Blockchain Extensions 130 Tampering (T) 130		
Advanced Level: Blockchain Extensions 130 Tampering (T) 130		
Tampering (T) 130		
Fundamental: Primitives of Cryptographic 130		
	Fundamental: Primitives of Cryptographic	130

Fundamental: Cryptographic Primitives	131
Protocol: Consensus Mechanisms	
Protocol: Consensus Mechanisms	133
Protocol: Block Creation	133
Infrastructure: Network	134
Advanced: Smart Contracts	134
Advanced: Smart Contracts	135
Advanced: Smart Contracts	136
Advanced: Smart Contracts	136
Advanced: Smart Contracts	137
Advanced: Smart Contracts	138
Repudiation (R)	
Information Disclosure (I)	139
Denial of Service (D)	139
Protocol: Consensus Mechanism	
Protocol: Block Creation	
Infrastructure: Nodes	
Infrastructure: Network	
Infrastructure: Network	
Infrastructure: Network	
Advanced: Smart Contracts	
Advanced: Smart Contracts	
Elevated Privileges (E)	
Protocol: Consensus Mechanism	
Infrastructure: Nodes	
FUTURE WORK	
CONCLUSION	
REFERENCES	
	110
CHAPTER 7 APPLICATIONS OF BLOCKCHAIN IN HEALTHCARE: STATE-OF-THE-	
ART SURVEY	148
J. Sathish Kumar and M.V. Sanand	
INTRODUCTION	
LITERATURE REVIEW	
APPLICATIONS OF BLOCKCHAIN IN HEALTHCARE	
Provenance-Based Architecture	
Integration of FHIR Standard with Blockchain in Healthcare	
Integrated Architecture	
Blockchain Network	158
Aadhar Card Verification	158
Smart Contracts	
Data Storage	
Syncing Algorithm	
BENEFITS OF BLOCKCHAIN IN HEALTHCARE	160
Data Security and Privacy	160
Interoperability	161
Efficiency and Cost Reduction	
CHALLENGES AND LIMITATIONS OF BLOCKCHAIN IN HEALTHCARE	162
Regulatory and Legal Issues	162
Integration with Legacy Systems	162
Scalability and Performance	

ART

CASE STUDIES	163
MedicalChain	
Solve.Care	
MediLedger	
FUTURE DIRECTIONS	
Interoperability	
Standardization	
Regulatory Frameworks	
Expansion of Use Cases	
CONCLUSION	
REFERENCES	
CHAPTER 8 BLOCKCHAIN-POWERED MONITORIN	G OF HEALTHCARE
CREDENTIALS THROUGH BLOCKCHAIN-BASED TE	CHNOLOGY 170
Rahul Joshi, Shashi Kant Gupta, Rajesh Natarajan,Krish	nna Pandey and Suman
Kumari	
INTRODUCTION	
HISTORICAL BACKGROUND OF BLOCKCHAIN	
INTEGRATE IOT DEVICES WITH BLOCKCHAIN	
INCREASING IMPORTANCE OF BLOCKCHAIN	
ASPECTS OF BLOCKCHAIN TO SUPPORT UNIV	
HEALTHCARE BENEFITS OF BLOCKCHAIN-BA	
Ease of Access	
The Ability to Interoperate	
Proof of Identity	
Decentralzsed Repository	
Cost Saving	
NETWORKS OF BLOCKCHAIN TECHNOLOGY	
Public Blockchain	
Private Blockchain	
Consortium Blockchain	
THE METHOD FOR VERIFYING BLOCKCHAIN	
Understanding Practical Byzantine Fault Tolerance	
Proof-of-Stake (PoS) in Blockchain	
Understanding Proof-of-work (PoW) in Blockchai	
Understanding Proof-of-Weight in Blockchain	
Proof-of-Existence (POE) in Blockchain	
DATA REGARDING BLOCKCHAIN-BASED MON	
FACILITATORS OF BLOCKCHAIN TECHNOLO	
FACILITIES	
INNOVATIONS IN HEALTHCARE UTILIZING B	
UNIFIED WORKFLOW PROCESS	
BLOCKCHAIN TECHNOLOGICAL ISSUES AND	
E-Health Record System	
System for Detecting Medical Fraud	
Clinical Research	
SOFTWARE SOLUTION WITH APPLICATION O	
Gem Health Network	
OmniPHR	
MedRec	
MedShare	

IRYO	
Patientory	
COMPLIANCE WITH REGULATIONS WHEN HANDLING AND SHAR	
Automated Consent Management	
Implementation of Global Data Standards	
Implementation Strategies	
EMERGING DEVELOPMENTS IN THE USE OF BLOCKCHAIN TECH	NOLOGY IN
THE HEALTHCARE	
Blockchain Technology in the Supply Chains of Medical Care	
Rapid Integration into the IT Revolution	
Rapid Advancements in Developed Markets	
Implement Decentralized Identity Systems	
Utilize Advanced Encryption Techniques	
OBSTACLES RELATED TO THE INCORPORATION OF BLOCKCHAI	
TECHNOLOGY INTO HEALTHCARE SYSTEMS	
Scalability Issues	
Integration Complexity	
High Implementation Costs	
Security and Privacy Concerns	
Consensus Mechanisms and Performance	
Data Governance and Ownership	
THE EMERGENCE OF BLOCKCHAIN TECHNOLOGY IN INDIAN HE	ALTHCARE
INDUSTRY	
CONCLUSION	
REFERENCES	
IPACT OF AI-DRIVEN SENSORS ON OPTIMIZING AVIAN HEALTH P. Deepan, R. Vidya, N. Arul, S. Dhiravidaselvi and Shashi Kant Gupta	
INTRODUCTION	
Limitations in Traditional Poultry Farming	
Background of the Invention	
Challenges in Poultry Farming	
Summary of the Research	
LITERATURE REVIEW	
Objectives of the Research Work	
DESIGN THE PROTOTYPE	
Arduino UNO Board	
DTH11 Sensor	
MQ135 Sensor	
LDR Sensor	,
LCD Display	
GSM Module	
Thermal Sensor	
COLLECTING THE DATA AND MONITORING THE HEN HEALTH	
INTEGRATION OF IOT SENSORS IN THE ARCHITECTURE	
Optimization Strategies	
Contribution of the Research	
CONCLUSION	
REFERENCES	

CHAPTER 10 DEEP LEARNING-POWERED VISUAL AUGMENTATION FOR THE VISUALLY IMPAIRED	218
Gandrapu Satya Sai Surya Subrahmanya Venkata Krishna Mohan, Mahammad Firose	
Shaik, G. Usandra Babu, Manikandan Hariharan and Kiran Kumar Patro	
INTRODUCTION	219
LITERATURE REVIEW	
TECHNOLOGIES	
Deep Learning	
YOLO Algorithm	
Residual Blocks	
Bounding Box Regression	
Region-based Convolutional Neural Network (RCNN)	
PROPOSED METHOD	
Software Packages Utilised	
RESULTS AND DISCUSSION	
Quantitative Metrics	
Discussion on Limitations	
CONCLUSION	
REFERENCES	
CHAPTER 11 AI-ASSISTED CROP MANAGEMENT USING THE LSTM MODEL IN	224
SMART FARMING	234
Prabakaran Natarajan, Abhijai Rajawat, Akshat Chaube, Anshul Mahlavat and	
Ramanathan Lakshmanan	225
INTRODUCTION	
FACTORS	
Phosphorus Level of Soil	
Potassium Level of Soil	
Temperature	
Humidity	
PH of Soil	
Rainfall	
Soil Moisture	
APPROACHES	
Long Short Term Memory (LSTM)	
Computational Complexity for LSTM	
Scalability and Efficiency	
Gated Recurrent Unit (GRU)	
Computational Complexity	
Scalability and Efficiency	
Support Vector Machine (SVM)	
Computational Complexity	
Scalability and Efficiency	
Naive Bayes	
Computational Complexity	
Scalability and Efficiency	
Artificial Neural Network (ANN)	
Computational Complexity	
Scalability and Efficiency	
Deep Belief Network	
Computational Complexity	243

Scalability and Efficiency	. 243
INSIGHTS INTO APPROACHES USED	. 243
Machine Learning Deployment Requirements	. 243
Computational Requirements	. 245
Hardware Considerations	. 245
Processing Power	. 245
PROPOSED METHODOLOGY	. 246
EXPERIMENTAL RESULTS	. 249
INTERPRETABILITY OF MODELS	. 252
Long Short-Term Memory (LSTM)	. 252
Artificial Neural Network (ANN)	. 253
Gated Recurrent Unit (GRU)	. 253
Naïve Bayes	. 253
Support Vector Machine (SVM)	. 253
Deep Belief Network (DBN)	
Summary of Interpretability	. 254
FUTURE WORK	
CONCLUSION	. 255
REFERENCES	. 255
OU A DTED 12 A UTOMATED BOODLICTION MANA CEMENT IN HODTICHI TUDE AN	
CHAPTER 12 AUTOMATED PRODUCTION MANAGEMENT IN HORTICULTURE: AN	259
INDUSTRY 4.0 PERSPECTIVE	. 258
Archna, Gursharan Singh, Nidhi Bhagat and Sakshi Thakur	250
THE ORETICAL BACKGROUND	
RESEARCH METHODOLOGY	
INTRODUCTION	
Meaning of Automated	
Comparison of Traditional and Modern Process TECHNOLOGY APPLICATION IN AUTOMATED PRODUCTION MANAGEMENT	
Precision Irrigation	
-	
Robotic Crop Care	
Climate Control in Controlled Environment Agriculture (CEA) IPM (Integrated Pest Control)	
Decision-Making Based on Data	
Remote Monitoring and Control	
Robotic Systems	
Sensing and Monitoring Precision Irrigation	
Climate Control and Indoor Farming Data Analytics and Decision Support	
Inventory Management and Resource Optimisation	
Task Scheduling and Workflows	
REVOLUTIONIZING HORTICULTURE: THE IMPACT OF AUTOMATION	
HORTICULTURL TECHNIQUES: TRADITIONAL VS. MODERN	
FINDINGS OF THE STUDY	
RECOMMENDATIONS OF THE STUDY	
CONCLUSION	
REFERENCES	
	. 200
CHAPTER 13 REVOLUTIONIZING AGRICULTURE THROUGH IOT-ENHANCED DATA	
ANALYTICS: A STUDY FROM A BLOCKCHAIN TECHNOLOGY PERSPECTIVE	. 283
S. Sivabalan, R. Renugadevi, G. Kalaiarasi, R. Rathipriya and A. Loganathan	

LITERATURE REVIEW Blockchain Benefits to the Agriculture IoT Enhanced Traceability Improved Transparency Automation through Smart Contracts Data Security Quality Assurance and Certification Enhanced Trace Marketplaces Facilitating Global Trade Applications of Blockchain IoT SC Maintenance Interconnected Urban Areas and Residences Data Analysis with Blockchain IoT Intelligent Healthcare Smart Farming Key Participants in the Blockchain IoT IOTA Modum.io Xage Security FARMS (Financial and Agricultural Risk_Management_For_Smallhol- ders) Chain Management The FSC Consists of Six Stages METHODOLOGIES Study of AgriBlockloT-Ecosystem Applications of Agriculture Smart Farming Supply Chain Management (SCA) Asset Tracking Implement Blockchain in Agriculture Smart Farming Supply Chain Management (SCA) Asset Tracking Implement Blockchain in Agriculture Smart F	INTRODUCTION	
Blockchain Benefits to the Agriculture IoT Enhanced Traceability Improved Tracensparency Automation through Smart Contracts Data Security Quality Assurance and Certification Enhanced Supply Chain Efficiency Decentralized Marketplaces Facilitating Global Trade Applications of Blockchain IoT SC Maintenance Interconnected Urban Areas and Residences Data Analysis with Blockchain IoT Intelligent Healthcare Smart Farming Key Participants in the Blockchain IoT Market Noteworthy Newcomers Chain of Things (CoT) IOTA Modum.io Xage Security FARMS (Financial_and_Agricultural_Risk_Management_For_Smallhol- ders) Chain Management The FSC Consists of Six Stages METHODOLOGIES Study of AgriBlockloT-Ecosystem Applications of AgriBlockloT Smart Farming Inovations Food Supply Chain In Agriculturel Smart Farming Inovations Food Supply Chain in Agricultural Products Data Stages METHODOLOGIES Study of AgriBlockchoT Smart Farming Innovations Food Supply Chain (FSC) Transactions involving Agricultural Products Data-Security Management of the SC Insurance for Agriculture RESULT STUDY CONCLUSION Implication for Beneficiaries Overcoming Barriers The Road Ahead Invitation to Engagement	LITERATURE REVIEW	
Enhanced Traceability Improved Transparency Automation through Smart Contracts Data Security Quality Assurance and Certification Enhanced Supply Chain Efficiency Decentralized Marketplaces Facilitating Global Trade Applications of Blockchain IoT SC Maintenance Interconnected Urban Areas and Residences Data Analysis with Blockchain IoT Interconnected Urban Areas and Residences Data Analysis with Blockchain IoT Intelligent Healthcare Smart Farming Key Participants in the Blockchain IoT Market Noteworthy Newcomers Chain of Things (CoT) IOTA Modum.io Xage Security FARMS (Financial_and_Agricultural_Risk_Management_For_Smallhol- ders) Chain Management The FSC Consists of Six Stages METHODOLOGHES Study of AgriBlockloT-Ecosystem Applications of AgriBlockloT Smart Farming Supply Chain Management (SCA) Asset Tracking Implement Blockchain in Agriculture Smart Farming Innovations <td></td> <td></td>		
Improved Transparency Automation through Smart Contracts Data Security Quality Assurance and Certification Enhanced Supply Chain Efficiency Decentralized Marketplaces Facilitating Global Trade Applications of Blockchain IoT SC Maintenance Interconnected Urban Areas and Residences Data Analysis with Blockchain IoT Intelligent Healthcare Smart Farming Key Participants in the Blockchain IoT Market Noteworthy Newcomers Chain of Things (CoT) IOTA Modum.io Xage Security FARMS (Financial_and_Agricultural_Risk_Management_For_Smallhol- ders) Chain Management The FSC Consists of Six Stages METHODOLOGIES Study of AgriBlockloT-Ecosystem Applications of AgriBlockloT Smart Farming Supply Chain Management (SCA) Asset Tracking Implement Blockchain in Agriculture Smart Farming Supply Chain Management (SCA) Asset Tracking Implement Blockchain in Agriculture Smart Farming Innovations Food Supply Chain (FSC) Transactions involving Agricultural Products Data-Security Management of the SC Insurance for Agriculture RESULT STUDY CONCLUSION Implication for Beneficiaries Overcoming Barriers The Road Ahead Invitation to Engagement		
Automation through Smart Contracts Data Security Quality Assurance and Certification Enhanced Supply Chain Efficiency Decentralized Marketplaces Facilitating Global Trade Applications of Blockchain IoT SC Maintenance Interconnected Urban Areas and Residences Data Analysis with Blockchain IoT Interconnected Urban Areas and Residences Data Analysis with Blockchain IoT Intelligent Healthcare Smart Farming Schawart (CoT) IOTA Modum.io Xage Security FARMS (Financial and Agricultural Risk_Management_For_Smallhol- ders) Chain Management The FSC Consists of Six Stages METHODOLOGIES Study of AgriBlockIoT-Ecosystem Applications of AgriBlockIoT Smart Farming Supply Chain Management (SCA) Asset Tracking Implement Blockchain in Agriculture Smart-Farming Innovations Food Supply Chain (FSC) Transactions involving Agricultural Products Data-Security Management of the SC		
Data Security Quality Assurance and Certification Enhanced Supply Chain Efficiency Decentralized Marketplaces Facilitating Global Trade Applications of Blockchain IoT SC Maintenance Interconnected Urban Areas and Residences Data Analysis with Blockchain IoT Intelligent Healthcare Smart Farming Key Participants in the Blockchain IoT Market Noteworthy Newcomers Chain of Things (CoT) IOTA Modum.io Xage Security FARMS (Financial_and_Agricultural_Risk_Management_For_Smallhol- ders) Chain Management The FSC Consists of Six Stages METHODOLOCIES Study of AgriBlockloT-Ecosystem Applications of AgriBlockloT Smart Farming Supply Chain Management (SCA) Asset Tracking Implement Blockchain in Agriculture Smart Farming Model		
Quality Assurance and Certification Enhanced Supply Chain Efficiency Decentralized Marketplaces Facilitating Global Trade Applications of Blockchain IoT SC Maintenance Interconnected Urban Areas and Residences Data Analysis with Blockchain IoT Intelligent Healthcare Smart Farming Key Participants in the Blockchain IoT Market Noteworthy Newcomers Chain of Things (CoT) IOTA Modum.io Xage Security FARMS (Financial and Agricultural Risk_Management_For_Smallhol-ders) Chain of Things (CoT) Chain Management The FSC Consists of Six Stages METHODOLOGEES Study of AgriBlockIoT-Ecosystem Applications of AgriBlockIoT Smart Farming Supply Chain Management (SCA) Asset Tracking Implement Blockchain in Agriculture Smart Farming Model Smart Farming Model Smart Farming Model Smart Farming Innovations Food Supply Chain (FSC) Transactions involving Agricultural Products <		
Enhanced Supply Chain Efficiency Decentralized Marketplaces Facilitating Global Trade Applications of Blockchain IoT SC Maintenance Interconnected Urban Areas and Residences Data Analysis with Blockchain IoT Interconnected Urban Areas and Residences Data Analysis with Blockchain IoT Intelligent Healthcare Smart Farming Key Participants in the Blockchain IoT Market Noteworthy Newcomers Chain of Things (CoT) IOTA Modum.io Xage Security FARMS (Financial and Agricultural Risk_Management_For_Smallhol- ders) Chain Management The FSC Consists of Six Stages METHODOLOGIES Study of AgriBlockloT-Ecosystem Applications of AgriBlockloT Smart Farming Supply Chain Management (SCA) Asset Tracking Implement Blockchain in Agriculture Smart Farming Model Smart Farming Model Smart Farming Model Smart Farming Innovations Food Supply Chain (FSC) Transactions involving Agricultural Products <td></td> <td></td>		
Decentralized Marketplaces Facilitating Global Trade Applications of Blockchain IoT SC Maintenance Interconnected Urban Areas and Residences Data Analysis with Blockchain IoT Intelligent Healthcare Smart Farming Key Participants in the Blockchain IoT Market Noteworthy Newcomers Chain of Things (CoT) IOTA Modum.io Xage Security FARMS (Financial_and_Agricultural_Risk_Management_For_Smallhol- ders) Chain Management The FSC Consists of Six Stages METHODOLOGIES Study of AgriBlockIoT-Ecosystem Applications of AgriBlockIoT Smart Farming Supply Chain Management (SCA) Asset Tracking Implement Blockchain in Agriculture Smart Farming Innovations Food Supply Chain (FSC) Transactions involving Agricultural Products Data-Security Management of the SC Insurance for Agriculture RESULT STUDY Consclusion for Beneficiaries Overcoming Barriers The Road Ahead		
Facilitating Global Trade Applications of Blockchain IoT SC Maintenance Interconnected Urban Areas and Residences Data Analysis with Blockchain IoT Intelligent Healthcare Smart Farming Key Participants in the Blockchain IoT Market Noteworthy Newcomers Chain of Things (CoT) IOTA Modum.io Xage Security FARMS (Financia] and Agricultural_Risk_Management_For_Smallhol- ders) Chain Management The FSC Consists of Six Stages METHODOLOGIES Study of AgriBlockloT-Ecosystem Applications of AgriBlockloT Smart Farming Supply Chain Management (SCA) Asset Tracking Implement Blockchain in Agriculture Smart Farming Innovations Food Supply Chain (FSC) Transactions involving Agricultural Products Data-Security Management of the SC Insurance for Agriculture Management of the SC Insurance for Agriculture Management of the SC Insurance for Agriculture Result TSTUDY		
Applications of Blockchain IoT SC Maintenance Interconnected Urban Areas and Residences Data Analysis with Blockchain IoT Intelligent Healthcare Smart Farming Key Participants in the Blockchain IoT Market Noteworthy Newcomers Chain of Things (CoT) IOTA Modum.io Xage Security FARMS (Financial_and_Agricultural_Risk_Management_For_Smallhol- ders) Chain Management The FSC Consists of Six Stages METHODOLOGIES Study of AgriBlockIoT-Ecosystem Applications of AgriBlockIoT Smart Farming Supply Chain Management (SCA) Asset Tracking Implement Blockchain in Agriculture Smart Farming Model Smart Farming Innovations Food Supply Chain (FSC) Transactions involving Agricultural Products Data-Security		
SC Maintenance Interconnected Urban Areas and Residences Data Analysis with Blockchain IoT Intelligent Healthcare Smart Farming Key Participants in the Blockchain IoT Market Noteworthy Newcomers Chain of Things (CoT) IOTA Modum.io Xage Security FARMS (Financial_and_Agricultural_Risk_Management_For_Smallhol- ders) Chain Management The FSC Consists of Six Stages METHODOLOGIES Study of AgriBlockloT-Ecosystem Applications of AgriBlockloT Smart Farming Supply Chain Management (SCA) Asset Tracking Implement Blockchain in Agriculture Smart-Farming Model Smart Farming Innovations Food Supply Chain (FSC) Transactions involving Agricultural Products Data-Security Management of the SC Insurance for Agriculture RESULT STUDY CONCLUSION Implication for Beneficiaries Overcoming Barriers The Road Ahead Invitation to Engagement		
Maintenance Interconnected Urban Areas and Residences Data Analysis with Blockchain IoT Intelligent Healthcare Smart Farming Key Participants in the Blockchain IoT Market Noteworthy Newcomers Chain of Things (CoT) IOTA Modum.io Xage Security FARMS (Financial_and_Agricultural_Risk_Management_For_Smallhol-ders) Chain Management The FSC Consists of Six Stages METHODOLOGIES Study of AgriBlockIoT-Ecosystem Applications of AgriBlockIoT Smart Farming Supply Chain Management (SCA) Asset Tracking Implement Blockchain in Agriculture Smart-Farming Model Smart-Farming Model Smart-Farming Model Smart-Farming Model Smart-Farming Model Smart-Farming Innovations Food Supply Chain (FSC) Transactions involving Agricultural Products Data-Security Management of the SC Insurance for Agriculture RESULT STUDY CONCLUSION Implication for Beneficiaries <		
Interconnected Urban Areas and Residences		
Data Analysis with Blockchain IoT Intelligent Healthcare Smart Farming Key Participants in the Blockchain IoT Market Noteworthy Newcomers Chain of Things (CoT) IOTA Modum.io Xage Security FARMS (Financial_and_Agricultural_Risk_Management_For_Smallhol- ders) Chain Management The FSC Consists of Six Stages METHODOLOGIES Study of AgriBlockloT-Ecosystem Applications of AgriBlockloT Smart Farming Supply Chain Management (SCA) Asset Tracking Implement Blockchain in Agriculture Smart Farming Model Study of Agriculture RESULT STUDY CONCLUSION		
Intelligent Healthcare Smart Farming Key Participants in the Blockchain IoT Market Noteworthy Newcomers Chain of Things (CoT) IOTA Modum.io Xage Security FARMS (Financial_and_Agricultural_Risk_Management_For_Smallhol- ders) Chain Management The FSC Consists of Six Stages METHODOLOGIES Study of AgriBlockIoT-Ecosystem Applications of AgriBlockIoT Supply Chain Management (SCA) Asset Tracking Implement Blockchain in Agriculture Smart-Farming Model Smart Farming Innovations Food Supply Chain (FSC) Transactions involving Agricultural Products Data-Security Management of the SC Insurance for Agriculture RESULT STUDY CONCLUSION Implication for Beneficiaries Overcoming Barriers The Road Ahead Invitation to Engagement		
Smart Farming Key Participants in the Blockchain IoT Market Noteworthy Newcomers Chain of Things (CoT) IOTA Modum.io Xage Security FARMS (Financial_and_Agricultural_Risk_Management_For_Smallhol- ders) Chain Management The FSC Consists of Six Stages METHODOLOGIES Study of AgriBlockIoT-Ecosystem Applications of AgriBlockIoT Supply Chain Management (SCA) Asset Tracking Implement Blockchain in Agriculture Smart Farming Model Smart Farming Innovations Food Supply Chain (FSC) Transactions involving Agricultural Products Data-Security Management of the SC Insurance for Agriculture RESULT STUDY CONCLUSION Implication for Beneficiaries Overcoming Barriers The Road Ahead Invitation to Engagement		
Key Participants in the Blockchain IoT Market Noteworthy Newcomers Chain of Things (CoT) IOTA IOTA Modum.io Xage Security FARMS (Financial and Agricultural Risk_Management_For_Smallhol- ders) Chain Management The FSC Consists of Six Stages METHODOLOGIES Study of AgriBlockIoT-Ecosystem Applications of AgriBlockIoT Smart Farming Supply Chain Management (SCA) Asset Tracking Implement Blockchain in Agriculture Smart-Farming Model Smart Farming Innovations Food Supply Chain (FSC) Transactions involving Agricultural Products Data-Security Management of the SC Insurance for Agriculture RESULT STUDY CONCLUSION Implication for Beneficiaries Overcoming Barriers The Road Ahead Invitation to Engagement	-	
Noteworthy Newcomers Chain of Things (CoT) IOTA Modum.io Xage Security FARMS (Financial and Agricultural Risk_Management_For_Smallhol- ders) Chain Management The FSC Consists of Six Stages METHODOLOGIES Study of AgriBlockIoT-Ecosystem Applications of AgriBlockIoT Smart Farming Supply Chain Management (SCA) Asset Tracking Implement Blockchain in Agriculture Smart-Farming Model Smart Farming Innovations Food Supply Chain (FSC) Transactions involving Agricultural Products Data-Security Management of the SC Insurance for Agriculture RESULT STUDY CONCLUSION Implication for Beneficiaries Overcoming Barriers The Road Ahead Invitation to Engagement		
Chain of Things (CoT) IOTA IOTA Modum.io Xage Security FARMS (Financial_and_Agricultural_Risk_Management_For_Smallhol- ders) Chain Management The FSC Consists of Six Stages METHODOLOGIES Study of AgriBlockIoT-Ecosystem Applications of AgriBlockIoT Smart Farming Supply Chain Management (SCA) Asset Tracking Implement Blockchain in Agriculture Smart-Farming Model Smart Farming Innovations Food Supply Chain (FSC) Transactions involving Agricultural Products Data-Security Management of the SC Insurance for Agriculture RESULT STUDY CONCLUSION Implication for Beneficiaries Overcoming Barriers The Road Ahead Invitation to Engagement		
IOTA Modum.io Xage Security FARMS (Financial_and_Agricultural_Risk_Management_For_Smallhol- ders) Chain Management Chain Management The FSC Consists of Six Stages METHODOLOGIES Study of AgriBlockIoT-Ecosystem Applications of AgriBlockIoT Smart Farming Supply Chain Management (SCA) Asset Tracking Implement Blockchain in Agriculture Smart Farming Model Smart Farming Model Smart Farming Innovations Food Supply Chain (FSC) Transactions involving Agricultural Products Data-Security Management of the SC Insurance for Agriculture RESULT STUDY CONCLUSION Implication for Beneficiaries Overcoming Barriers The Road Ahead Invitation to Engagement		
Modum.io Xage Security FARMS (Financial_and_Agricultural_Risk_Management_For_Smallhol-ders) Chain Management The FSC Consists of Six Stages METHODOLOGIES Study of AgriBlockIoT-Ecosystem Applications of AgriBlockIoT Smart Farming Supply Chain Management (SCA) Asset Tracking Implement Blockchain in Agriculture Smart Farming Model Smart Farming Innovations Food Supply Chain (FSC) Transactions involving Agricultural Products Data-Security Management of the SC Insurance for Agriculture Implication for Beneficiaries Overcoming Barriers The Road Ahead Invitation to Engagement Invitation to Engagement		
Xage Security FARMS (Financial_and_Agricultural_Risk_Management_For_Smallhol- ders) Chain Management The FSC Consists of Six Stages METHODOLOGIES Study of AgriBlockIoT-Ecosystem Applications of AgriBlockIoT Smart Farming Supply Chain Management (SCA) Asset Tracking Implement Blockchain in Agriculture Smart Farming Model Smart Farming Innovations Food Supply Chain (FSC) Transactions involving Agricultural Products Data-Security Management of the SC Insurance for Agriculture RESULT STUDY CONCLUSION Implication for Beneficiaries Overcoming Barriers The Road Ahead Invitation to Engagement		
FARMS (Financial_and_Agricultural_Risk_Management_For_Smallhol- ders) Chain Management The FSC Consists of Six Stages METHODOLOGIES Study of AgriBlockIoT-Ecosystem Applications of AgriBlockIoT Smart Farming Supply Chain Management (SCA) Asset Tracking Implement Blockchain in Agriculture Smart Farming Model Smart Farming Innovations Food Supply Chain (FSC) Transactions involving Agricultural Products Data-Security Management of the SC Insurance for Agriculture RESULT STUDY CONCLUSION Implication for Beneficiaries Overcoming Barriers The Road Ahead Invitation to Engagement		
Chain Management The FSC Consists of Six Stages METHODOLOGIES Study of AgriBlockIoT-Ecosystem Applications of AgriBlockIoT Smart Farming Supply Chain Management (SCA) Asset Tracking Implement Blockchain in Agriculture Smart-Farming Model Smart Farming Innovations Food Supply Chain (FSC) Transactions involving Agricultural Products Data-Security Management of the SC Insurance for Agriculture RESULT STUDY CONCLUSION Implication for Beneficiaries Overcoming Barriers The Road Ahead Invitation to Engagement		
The FSC Consists of Six Stages		
METHODOLOGIES Study of AgriBlockIoT-Ecosystem Applications of AgriBlockIoT Smart Farming Supply Chain Management (SCA) Asset Tracking Implement Blockchain in Agriculture Smart-Farming Model Smart Farming Innovations Food Supply Chain (FSC) Transactions involving Agricultural Products Data-Security Management of the SC Insurance for Agriculture RESULT STUDY CONCLUSION Implication for Beneficiaries Overcoming Barriers The Road Ahead Invitation to Engagement		
Study of AgriBlockIoT-Ecosystem Applications of AgriBlockIoT Smart Farming Supply Chain Management (SCA) Asset Tracking Implement Blockchain in Agriculture Smart-Farming Model Smart Farming Innovations Food Supply Chain (FSC) Transactions involving Agricultural Products Data-Security Management of the SC Insurance for Agriculture RESULT STUDY CONCLUSION Implication for Beneficiaries Overcoming Barriers The Road Ahead Invitation to Engagement		
Applications of AgriBlockIoT Smart Farming Supply Chain Management (SCA) Asset Tracking Implement Blockchain in Agriculture Smart-Farming Model Smart Farming Innovations Food Supply Chain (FSC) Transactions involving Agricultural Products Data-Security Management of the SC Insurance for Agriculture RESULT STUDY CONCLUSION Implication for Beneficiaries Overcoming Barriers The Road Ahead Invitation to Engagement		
Smart Farming Supply Chain Management (SCA) Asset Tracking Implement Blockchain in Agriculture Smart-Farming Model Smart Farming Innovations Food Supply Chain (FSC) Transactions involving Agricultural Products Data-Security Management of the SC Insurance for Agriculture RESULT STUDY CONCLUSION Implication for Beneficiaries Overcoming Barriers The Road Ahead Invitation to Engagement		
Supply Chain Management (SCA) Asset Tracking Implement Blockchain in Agriculture Smart-Farming Model Smart Farming Innovations Food Supply Chain (FSC) Transactions involving Agricultural Products Data-Security Management of the SC Insurance for Agriculture RESULT STUDY CONCLUSION Implication for Beneficiaries Overcoming Barriers The Road Ahead Invitation to Engagement		
Asset Tracking		
Implement Blockchain in Agriculture Smart-Farming Model Smart Farming Innovations Food Supply Chain (FSC) Transactions involving Agricultural Products Data-Security Management of the SC Insurance for Agriculture RESULT STUDY CONCLUSION Implication for Beneficiaries Overcoming Barriers The Road Ahead Invitation to Engagement		
Smart-Farming Model Smart Farming Innovations Food Supply Chain (FSC) Transactions involving Agricultural Products Data-Security Management of the SC Insurance for Agriculture RESULT STUDY CONCLUSION Implication for Beneficiaries Overcoming Barriers The Road Ahead Invitation to Engagement	-	
Smart Farming Innovations Food Supply Chain (FSC) Transactions involving Agricultural Products Data-Security Management of the SC Insurance for Agriculture RESULT STUDY CONCLUSION Implication for Beneficiaries Overcoming Barriers The Road Ahead Invitation to Engagement	· ·	
Food Supply Chain (FSC) Transactions involving Agricultural Products Data-Security Management of the SC Insurance for Agriculture RESULT STUDY CONCLUSION Implication for Beneficiaries Overcoming Barriers The Road Ahead Invitation to Engagement		
Transactions involving Agricultural Products Data-Security Management of the SC Insurance for Agriculture RESULT STUDY CONCLUSION Implication for Beneficiaries Overcoming Barriers The Road Ahead Invitation to Engagement		
Data-Security Management of the SC Insurance for Agriculture RESULT STUDY CONCLUSION Implication for Beneficiaries Overcoming Barriers The Road Ahead Invitation to Engagement		
Management of the SC Insurance for Agriculture RESULT STUDY CONCLUSION Implication for Beneficiaries Overcoming Barriers The Road Ahead Invitation to Engagement		
Insurance for Agriculture		
RESULT STUDY		
CONCLUSION Implication for Beneficiaries Overcoming Barriers The Road Ahead Invitation to Engagement		
Implication for Beneficiaries Overcoming Barriers The Road Ahead Invitation to Engagement		
Overcoming Barriers		
The Road Ahead Invitation to Engagement		
Invitation to Engagement		
66		
	66	
	KEFEKENUED	

FOREWORD

In the healthcare field, the combination of blockchain technology and the Internet of Things (IoT) has brought about a wave of innovation and change. The collaboration between these technologies shows the potential to transform how healthcare services are provided, managed, and safeguarded. As we dive into the contents of this revised book titled "Blockchain-Enabled Internet of Things Applications in Healthcare: Current Practices and Future Directions", we set out to explore and uncover the possibilities of this duo.

This publication serves as a handbook that sheds light on the state of blockchain-powered applications in the healthcare sector, providing valuable perspectives on the potential future directions that this integration may take. By presenting insights from industry experts, readers will gain a view of the uses, challenges, and opportunities at the intersection of blockchain, IoT, and healthcare.

From bolstering data security and privacy to facilitating communication among healthcare systems, the sections featured in this book provide a perspective on the innovative solutions shaping the healthcare sector. By utilizing the characteristics of blockchain in conjunction with the interconnected nature of devices, healthcare stakeholders are empowered to improve effectiveness, enhance results, and propel innovation to unprecedented levels.

As we delve into the world of telemedicine, patient monitoring, supply chain management, and more, the insights shared in this book will spark inspiration and fuel curiosity. This book will pave the way for a future where healthcare prioritizes patients, relies on data, and embraces technology. I want to applaud the editors, authors and contributors for their input to this collection. I am confident that this book will be a source of knowledge for academics, researchers, practitioners, and enthusiasts.

Let's embark on this adventure together as we delve into the world of healthcare applications powered by blockchain technology. Envision a future where innovation knows no bounds. May this book motivate you to embrace technology's potential in healthcare and drive change for all.

Prof. Dimitrios A. Karras

National and Kapodistrian University of Athens (NKUA) Hellas, Greece

> Department of Computer Engineering EPOKA University, Tirana, Albania

> GLA University, Uttar Pradesh, India

BIHER University, Tamil Nadu, India

PREFACE

In the changing world of healthcare technology, the combination of the Internet of Things (IoT), blockchain, and smart healthcare has transformed how we view and provide healthcare services. This publication seeks to clarify these concepts and their practical applications in the healthcare industry for readers from different backgrounds. We begin by outlining terms such as IoT, blockchain, and smart healthcare to ensure a grasp of the technologies discussed throughout the book. Real-life examples are included to demonstrate the uses of IoT and blockchain in healthcare, highlighting both the advantages and difficulties faced by industry players.

The ethical aspects related to healthcare data, such as consent and data security, are explored to underscore the significance of upholding standards in this digital age of healthcare. Insights into trends and future pathways in IoT blockchain and healthcare are shared to provide a glimpse into where the industry is heading and potential advancements. Recognition of research in this field is acknowledged, along with a discussion on how this publication contributes to enhancing knowledge about IoT, blockchain, and healthcare.

An overview of security measures like authentication and authorization in IoT systems is presented to underscore their importance in fortifying against potential cybersecurity risks. In this book, you will find in-depth discussions about how blockchain technologies are incorporated into IoT healthcare systems. It also delves into the methods that safeguard data privacy and confidentiality.

The book sheds light on the hurdles and possibilities in the healthcare industry, demonstrating how IoT and blockchain are revolutionizing healthcare services and patient supervision.

Shashi Kant Gupta

Computer Science and Engineering Eudoxia Research University New Castle, USA

Joanna Rosak-Szyrocka

Department of Production Engineering and Safety Faculty of Management Czestochowa University of Technology Czestochowa, Poland

> Amit Mittal Research Programs Chitkara University Punjab, India

Sanjay Kumar Singh Amity Institute of Information Technology Uttar Pradesh, Lucknow, India Olena Hrybiuk International Science & Technology University National Academy of Sciences Kyiv, Ukraine

iii

List of Contributors

Abhijai Rajawat	School of Computer Science and Engineering, Vellore Institute of Technology, Vellore 632014, India		
Akshat Chaube	School of Computer Science and Engineering, Vellore Institute of Technology, Vellore 632014, India		
Anshul Mahlavat	School of Computer Science and Engineering, Vellore Institute of Technology, Vellore 632014, India		
Archna	Mittal School of Business, Lovely Professional University, Phagwara, India		
A. Loganathan	Department of Science and Humanities, Vignan University, Guntur, Andhra Pradesh, India		
Babasaheb Jadhav	Global Business School and Research Centre, Dr. D. Y. Patil Vidyapeeth, Pune, India		
Bhavneet Kaur Sachdev	Calcutta University, Kolkata, India		
Ganesh Khekare	School of Computer Science and Engineering, Vellore Institute of Technology, Vellore, 632014, India		
Gandrapu Satya Sai Surya Subrahmanya Venkata Krishna Mohan	Department of Electronics and Communication Engineering, Aditya Institute of Technology and Management, Tekkali, India		
G. Usandra Babu	Department of Electronics and Communication Engineering, Aditya University, Surampalem, Andhra Pradesh, India		
Gursharan Singh	School of Allied Medical Sciences, Lovely Professional University, Phagwara, India		
G. Kalaiarasi	Advanced Computer Science Engineering, School of Computing and Informatics, Vignan University, Guntur, Andhra Pradesh, India		
J. Mangaiyarkkarasi	NMSS. Vellaichamy Nadar College, Nagamalai, Madurai, Tamil Nadu, India		
J. Shanthalakshmi Revathy	Velammal College of Engineering and Technology, Madurai, Tamil Nadu, India		
J. Sathish Kumar	Motilal Nehru National Institute of Technology, Allahabad, Prayagraj, India		
K. Chandrasekaran	National Institute of Technology Karnataka, Surathkal, Mangalore, India		
Krishna Pandey	Department of Journalism & Mass Communication, SMeH, Manav Rachna International Institute of Research & Studies, Faridabad, Haryana, India		
Kiran Kumar Patro	Department of Electronics and Communication Engineering, Aditya Institute of Technology and Management, Tekkali, India		
Mudassar Sayyed	Institute of Management Studies Career Development and Research, Ahmednagar, India		
M.V. Sanand	Motilal Nehru National Institute of Technology, Allahabad, Prayagraj, India		

Mahammad Firose Shaik	Department of Electronics and Instrumentation Engineering, Velagapudi Ramakrishna Siddhartha Engineering College, Deemed to be University, Vijayawada, India		
Manikandan Hariharan	CMR Institute of Technology, Bangaluru, India		
N. Nasurudeen Ahamed	Department of Information Systems & Security, United Arab Emirates University, Al Ain, United Arab Emirates		
Nidhi Bhagat	Mittal School of Business, Lovely Professional University, Phagwara, India		
N. Arul	Department of CSM, St. Peter's Engineering College, Hyderabad-500043, India		
P. Deepan	Department of CSM, St. Peter's Engineering College, Hyderabad-500043, India		
Prabakaran Natarajan	School of Computer Science and Engineering, Vellore Institute of Technology, Vellore 632014, India		
Rahul Agrawal	Department of Data Science, IoT, Cybersecurity (DIC), G H Raisoni College of Engineering, Nagpur, India		
Rahul Khatri	School of Computer Science and Engineering, Vellore Institute of Technology, Vellore, 632014, India		
Rathnamma	KLM College of Engineering, Kadapa, Andra Pradesh, India		
Rahul Joshi	Department of Journalism & Mass Communication, SMeH, Manav Rachna International Institute of Research & Studies, Faridabad, Haryana, India		
Rajesh Natarajan	Department of Information Technology, University of Technology and Applied Sciences, Shinas, Oman		
R. Vidya	Department of CSM, St. Peter's Engineering College, Hyderabad- 500043, India		
Ramanathan Lakshmanan	School of Computer Science and Engineering, Vellore Institute of Technology, Vellore 632014, India		
R. Renugadevi	Advanced Computer Science Engineering, School of Computing and Informatics, Vignan University, Guntur, Andhra Pradesh, India		
R. Rathipriya	Department of Computer Science, Periyar University, Salem, Tamil Nadu, India		
Shashi Kant Gupta	Computer Science and Engineering, Eudoxia Research University, New Castle, USA		
Shilpa Mehta	Auckland University of Technology (AUT), Auckland, New Zealand		
Soham Ghugare	School of Computer Science and Engineering, Vellore Institute of Technology, Vellore, 632014, India		
Sharnil Pandya	Faculty of Technology, Linnaeus University, Växjö, Sweden		
Sumanta Bhattacharya	Maulana Abul Kalam Azad University of Technology, Kolkata, West Bengal, India		
S.V. Harish	Manipal Institute of Technology, Manipal, Karnataka 576104, India		

Suman Kumari	Department of Journalism & Mass Communication, SMeH, Manav Rachna International Institute of Research & Studies, Faridabad, Haryana, India
S. Dhiravidaselvi	Department of CSE, Roever Engineering College, Tamil Nadu-621212, India
Sakshi Thakur	Mittal School of Business, Lovely Professional University, Phagwara, India
S. Sivabalan	Computer Science Engineering, School of Computing and Informatics, Vignan University, Guntur, Andhra Pradesh, India
Tanweer Alam	Faculty of Computer & Information Systems, Islamic University of Madinah, Madinah, Saudi Arabia
Usha Divakarla	KLM College of Engineering, Kadapa, Andra Pradesh, India
Venkata Ramana	KSRM College of Engineering, Kadap, Andra Pradesh, India

vi

Intelligent IoT Healthcare Applications Powered by Blockchain Technology

Babasaheb Jadhav^{1,*}, Mudassar Sayyed² and Shashi Kant Gupta³

¹ Global Business School and Research Centre, Dr. D. Y. Patil Vidyapeeth, Pune, India

² Institute of Management Studies Career Development and Research, Ahmednagar, India

³ Computer Science and Engineering, Eudoxia Research University, New Castle, USA

Abstract: The fusion of artificial intelligence (AI) with the Internet of Things (IoT) marks a significant advancement in enhancing conventional healthcare systems across various domains, such as monitoring vital signs and patient behaviors. IoT sensors collect extensive information, which is then processed by AI platforms for informed decision-making. However, the pivotal challenges of privacy and security loom large, demanding robust protective measures for patient data against unauthorized access.

While access control has conventionally been employed to address these concerns, a more effective solution lies in leveraging blockchain technology. Consequently, the integration of IoT-based healthcare monitoring with blockchain emerges as a compelling technological innovation, offering a promising avenue to alleviate security and privacy apprehensions associated with data collection. This chapter introduces an architectural framework designed to gather, store, analyze, facilitate intelligent decision-making, and safeguard data using blockchain technology.

The proposed architecture harnesses the computational power derived from the synergy of IoT, blockchain, and artificial intelligence. It represents a versatile solution applicable across a broad spectrum of healthcare optimization initiatives, showcasing the potential to revolutionize and optimize healthcare systems.

The purpose of this study is to harness the power of artificial intelligence, IoT, and blockchain technology in making a system capable of enhancing the healthcare system. Further, the study presents an architecture that, if implemented, can help optimize the healthcare systems.

An architecture-based approach with AI, IoT, and blockchain techniques will be followed in designing architecture that can solve the integrated issues of data privacy and security that occur in healthcare systems.

Shashi Kant Gupta, Joanna Rosak-Szyrocka, Amit Mittal, Sanjay Kumar Singh & Olena Hrybiuk (Eds.) All rights reserved-© 2025 Bentham Science Publishers

^{*} **Corresponding author Babasaheb Jadhav:** Global Business School and Research Centre, Dr. D. Y. Patil Vidyapeeth, Pune, India; E-mail: babasaheb.jadhav@dpu.edu.in

2 Blockchain-Enabled Internet of Things Applications in Healthcare

Jadhav et al.

A systematic architecture will be generated to tackle the healthcare industry problem. Systematic study and architecture will serve as a platform for new research and application development.

Keywords: Artificial intelligence, Blockchain technology in healthcare, Decentralized healthcare, Data security, Digital health records, Healthcare data management, Healthcare blockchain integration, Healthcare applications, Intelligent healthcare, IoT in healthcare, Integration of AI in healthcare systems, Medical IoT devices, Remote patient monitoring, Real-time health analytics, Smart health monitoring, Smart hospitals, Telemedicine.

INTRODUCTION

An overview of the healthcare records from the past century clearly illustrates the remarkable evolution of healthcare systems. Key milestones include the development of antibiotics, anesthesia, vaccines, insulins, and significant advancements in medical technology and diagnostic tools. The progress in medical technology has greatly improved the accuracy and speed of diagnoses, with notable contributions such as X-rays, magnetic resonance imaging, computed tomography, electrocardiograms, ultrasound imaging, and patient monitor systems.

One groundbreaking innovation in medical technology that holds transformative potential is the integration of Internet of Things (IoT) devices into healthcare. In the healthcare context, IoT devices encompass wearable or implanted internetconnected devices designed to monitor specific health parameters [1]. These devices play a crucial role in various aspects, including glucose monitoring, hygiene monitoring, and tracking mood or depression. While IoT devices find applications in diverse domains, for the sake of clarity in this chapter, we recommend readers to associate them specifically with healthcare systems.

The core objective of any IoT device is to provide timely medical assistance. To satisfy this objective, a typical IoT device should have or facilitate 3 functionalities: data collection, data transmission, and data storage. Fig. (1) represents the intermixing of these functionalities, where an IoT device is responsible and engineered to collect the data from the patient, it needs to relate to a network, and lastly, it transfers data *via* a network to the IoT cloud managed by the respective healthcare service provider.

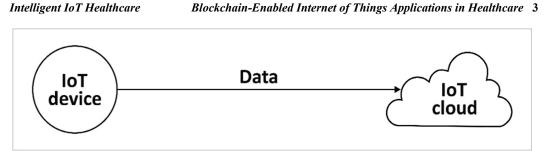


Fig. (1). Basic functionalities of or supported by IoT devices.

The data stored in the cloud is used for data analysis, whereby the healthcare providers can make decisions based on the reports. Fig. (2) introduces the data analysis components of previous functionalities.

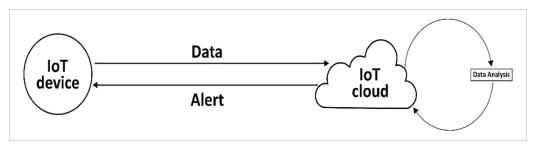


Fig. (2). Basic functionalities of or supported by IoT devices with data analysis components.

With recent advancements in artificial intelligence (AI) technology, the data store can be used to train machine learning (ML) algorithms so that the data can be used for intelligent decision-making. Fig. (3) shows the AI component in action.

Fig. (3). Basic functionalities, data analysis component, and AI component.

IoT devices, although effective if not designed and implemented carefully, are vulnerable to cyberattacks and can pose serious threats to the person. The data needs to be transmitted and stored in a secure manner. The analysis and reporting, if done incorrectly or late, can also pose a threat to the person. But if we can use cryptographic techniques to transmit the data, blockchain technologies to store the

CHAPTER 2

Blockchain-Powered IoT Innovations in Healthcare

J. Mangaivarkkarasi^{1,*}, J. Shanthalakshmi Revathy², Shashi Kant Gupta³ and Shilpa Mehta⁴

¹ NMSS. Vellaichamy Nadar College, Nagamalai, Madurai, Tamil Nadu, India

² Velammal College of Engineering and Technology, Madurai, Tamil Nadu, India

³ Computer Science and Engineering, Eudoxia Research University, New Castle, USA

⁴ Auckland University of Technology (AUT), Auckland, New Zealand

Abstract: The convergence of blockchain technology and the Internet of Things (IoT) has become a transformative catalyst in healthcare. "Blockchain-Powered IoT Innovations in Healthcare", a chapter in this book, explores the dynamic interplay between these technologies and their far-reaching impact on healthcare systems. This chapter commences with an introduction to blockchain and IoT, emphasizing their relevance within the healthcare domain. It underscores blockchain's pivotal role in fortifying patient data security, addressing privacy concerns, and rectifying vulnerabilities in healthcare data management and highlights the diverse applications of IoT devices in healthcare, including wearables, remote patient monitoring, and smart hospital equipment. It also addresses how blockchain facilitates secure cross-platform data sharing while preserving data integrity and confidentiality. The implementation of smart contracts in healthcare is explored, showcasing their influence on patient empowerment, data transparency, and the management of clinical trials. The chapter also illustrates how blockchain technology enhances supply chain management and ensures drug traceability, countering the proliferation of counterfeit medications. A comprehensive discussion on patient empowerment and data control reveals how blockchain is revolutionizing patient engagement and informed decision-making. The chapter analyzes the intricate landscape of legal and regulatory aspects, offering guidance on compliance and potential legal implications of blockchain adoption in healthcare. In conclusion, the chapter addresses the challenges, future prospects, and emerging trends in the field of healthcare. It serves as an essential resource for healthcare professionals, researchers, policymakers, and technology enthusiasts navigating the intersection of blockchain and IoT in the ever-evolving realm of healthcare.

Shashi Kant Gupta, Joanna Rosak-Szyrocka, Amit Mittal, Sanjay Kumar Singh & Olena Hrybiuk (Eds.)

All rights reserved-© 2025 Bentham Science Publishers

^{*} Corresponding author J. Mangaiyarkkarasi: NMSS. Vellaichamy Nadar College, Nagamalai, Madurai, Tamil Nadu, India; E-mail: mangai.jp@gmail.com

24 Blockchain-Enabled Internet of Things Applications in Healthcare

Mangaiyarkkarasi et al.

Keywords: Blockchain, Counterfeit medications, Clinical trials, Data security, Data interoperability, Drug traceability, Emerging trends, Healthcare, Internet of Things (IoT), Informed decision-making, Legal considerations, Medical research, Privacy, Patient engagement, Patient empowerment, Regulatory compliance, Remote patient monitoring, Smart hospital equipment, Smart contracts, Wearables.

INTRODUCTION

The convergence of blockchain technology along with the Internet of Things (IoT) has steered a new era of possibilities for the healthcare industry. "Blockchain-Powered IoT Innovations in Healthcare", a chapter in the book exploring this transformative interplay, begins by establishing the fundamental concepts of blockchain and IoT and their relevance within the healthcare domain. Blockchain, a distributed record technology, is a distributed and tamper-resistant database that registers and verifies transactions. It has gained significant traction across various industries due to its skill to improve security and transparency. In healthcare, the starter of blockchain expertise is paramount in addressing the numerous problems related to data security and data privacy [1]. With sensitive patient data at the core of healthcare operations, ensuring its integrity and confidentiality is a top priority. Blockchain provides a robust solution by creating an immutable ledger of transactions, making it exceedingly hard for unlicensed parties to tamper with or access sensitive information.

In addition to securing data, blockchain offers an innovative approach to data management and interoperability in healthcare. The introduction highlights the challenges of data silos and incompatibility among different healthcare systems. Blockchain acts as a bridge that allows secure cross-platform data sharing while preserving the integrity and confidentiality of patient records. This not only facilitates more efficient healthcare services but also improves the coordination of care across various providers [2]. The Internet of Things, conversely, embodies an extensive web of linked devices and sensors actively gathering and transmitting real-time data. In healthcare, IoT applications have taken many forms, from wearable devices that monitor vital signs to smart equipment used in hospitals [3]. The introduction to this chapter underscores the significance of IoT devices and their diverse applications in healthcare.

These applications include remote patient monitoring, enabling healthcare professionals to oversee patients' conditions from a distance, and the integration of intelligent hospital equipment. This technology not only enhances patient care but also minimizes human errors and contributes to more effective hospital management. The synergistic relationship between blockchain and IoT is a game-

Innovations in Healthcare

Blockchain-Enabled Internet of Things Applications in Healthcare 25

changer for healthcare. The introduction provides a glimpse into how these technologies work in harmony to revolutionize data management, data sharing, and patient care [4]. By establishing the foundational concepts of blockchain and IoT within the healthcare context, this chapter sets the stage for a complete exploration of the impact, challenges, and upcoming scenarios of this transformative convergence.

As the healthcare industry continues to evolve, the introduction to "Blockchain-Powered IoT Innovations in Healthcare" serves as an essential primer for healthcare experts, researchers, representatives, and technology enthusiasts seeking to direct this exciting intersection and harness the merits of blockchain and IoT in the realm of healthcare.

ENHANCING PATIENT PRIVACY AND DATA SECURITY

Patient privacy and secured data are paramount in healthcare. With the digitization of medical records and the increasing use of electronic health records (EHRs), safeguarding sensitive patient information has become a significant concern. Blockchain technology has appeared as a powerful solution for increasing patient privacy, ensuring that healthcare records remain confidential, tamper-proof, and accessible only to authorized parties. Fig. (1) explains how blockchain enhances privacy and data security for patients.

Fig. (1). Enhancing patient privacy and data security.

This figure depicts how blockchain and IoT collaborate to protect healthcare data. Their synergy ensures robust security and privacy.

Blockcain's Role in Securing Patient Data

Blockchain, often described as a distributed ledger technology, offers several key features that make it particularly well-suited for securing patient data:

Decentralization

In contrast to conventional centralized databases, blockchain functions within a decentralized network of computers. Every participant, referred to as a node,

Blockchain-Powered Integrated Health Profile and Record Management System for Seamless Consultation Leveraging Unique Identifiers

Ganesh Khekare^{1,*}, Rahul Agrawal², Rahul Khatri¹, Soham Ghugare¹ and Sharnil Pandya³

¹ School of Computer Science and Engineering, Vellore Institute of Technology, Vellore, 632014, India

² Department of Data Science, IoT, Cybersecurity (DIC), G H Raisoni College of Engineering, Nagpur, India

³ Faculty of Technology, Linnaeus University, Växjö, Sweden

Abstract: Integrated health profile (IHP) utilizes the power of blockchain technology and smart contracts to construct a decentralized and tamper-proof platform for storing and sharing decentralized health records. Ensuring security and removing all vulnerabilities from accessing doctor-patient data remotely aims to reduce patient wait times and chances of incorrect pre-consultation data. In the IHP system, every patient is linked with a unique identifier, and their health records linked to this unique identifier are stored securely. Everyone gets access to a personal IHP card, which plays a pivotal role in the entire IHP framework. It consists of a database of patient health records, including but not limited to reports, prescriptions, medical bills, and insurance receipts. Each card's unique identifier is printed on the physical card with a QR code linked to it. When scanned by the medical practitioner, the request is validated using an OTP-based two-factor authentication. Upon successful verification, the patient controls what subset of their medical database the practitioner would be able to access. This gives the patient control over the privacy of medical records. Implementation of this framework reduces manual doctor-patient questioning time and waiting time at medical center receptions. Overall, it reduces various administrative tasks and eliminates the need to have, keep, and carry physical records, improving operational productivity. This is done by harnessing the strength of application programming interfaces (APIs) that connect customer-centric applications (CCAs) that are used by customers to discover medical facilities to medical service provider applications (MSPs) that fulfill the medical service. Real-time information on medical facilities is fetched via APIs, giving all

Shashi Kant Gupta, Joanna Rosak-Szyrocka, Amit Mittal, Sanjay Kumar Singh & Olena Hrybiuk (Eds.) All rights reserved-© 2025 Bentham Science Publishers

^{*} Corresponding author Ganesh Khekare: School of Computer Science and Engineering, Vellore Institute of Technology, Vellore, 632014, India; E-mail: khekare.123@gmail.com

54 Blockchain-Enabled Internet of Things Applications in Healthcare

Khekare et al.

CCAs access to real-time information on all MSPs and helping fulfill medical service demands at scale.

Keywords: Blockchain, Blockchain health records, Integrated health profile, Medical service provider, Patient consultation, Record management system, Unique identifiers.

INTRODUCTION

The current healthcare system functions with certain inefficiencies like centralized health record storage, timely access to medical facilities, and various operational inefficiencies that hinder comprehensive and well-informed medical care services, which results in potential diagnostic errors. Moreover, centralized storage of records increases the risk of unauthorized access to sensitive medical information and patients' data. To deal with these challenges, giving patients control over their data has become a necessity [1].

The IHP framework addresses these concerns by assigning a unique identifier to each patient and securely linking their health records to this identifier. At the core of the IHP is an individualized IHP card, serving as an extensive repository for patients' records, including reports, prescriptions, medical bills, and insurance receipts [2]. The proposed IHP system overcomes these challenges by utilizing unique identifiers for each patient, accessed via an IHP card linked to a decentralized database of patient health records. The IHP card features a unique QR code connected to the patient's unique identifier (UID). When scanned by a medical practitioner, the patient undergoes a two-factor authentication process, receiving a one-time password (OTP) to ensure additional consent and security. After successful verification, the doctor gains access to a specific subset of the patient's shared records, respecting privacy and confidentiality. This UID is accessed via an IHP card through a QR code, which, when scanned, verifies the patient's identity via an OTP-based two-factor authentication, providing an additional layer of security measures and more control to the patient as they choose a subset of their medical data that they want the medical practitioner to access [3].

The implementation of the IHP framework brings significant improvements to the customer intake process, eliminating the need for manual data entry at healthcare facility receptions. This reduction in administrative tasks leads to shorter waiting times and enhanced operational efficiency. Additionally, integrating a patient's medical history with the IHP card provides medical service providers with extensive insights into the status of a patient's health, enabling accurate diagnoses and personalized treatment plans. This reduces wait time in queues at receptions,

Unique Identifiers

speeds up administrative work, and allows for more patient intake in hospitals. Additionally, it empowers medical practitioners with in-depth, comprehensive insights for each patient, enabling better diagnosis and personalized treatment plans [4].

LITERATURE REVIEW

To facilitate the efficient discovery of medical services, this framework employs standardized application programming interfaces (APIs) to connect customercentric applications (CCAs) with medical service provider applications (MSPs). Through these APIs, CCAs can access real-time information on available healthcare facilities, ensuring customers receive accurate and up-to-date details about their healthcare options [5].

The objective of this research paper is to explore and develop the IHP framework as an innovative solution for secure and decentralized health record storage and sharing [6]. By leveraging blockchain technology, smart contracts, and standardized APIs, the IHP offers numerous benefits to patients, including enhanced data security, improved privacy [7], streamlined executive processes, and facilitated healthcare service discovery. Through a comprehensive examination of the IHP framework and its potential applications, this study aims to contribute to the advancement of patient-centric and efficient healthcare systems [8]. Table 1 discusses the comparative study of the integrated health profiles for healthcare systems using blockchain, which are already available. Secured remote access to doctor-patient data is the need of the hour as the world moves towards home-based online services [9].

Article	Blockchain Technology	Type of Data	Merits	Limitations
[10, 11]	•The Multilink system is undependable of proof of stack •Personal blockchain	IHP	Improved and secured audit recording	•Only the Electronic Unit is considered
[12, 13]	•Personal blockchain.	IHP and PHP	Blockchain-based control application used to share healthcare information	•Ignored scalability and availability •Exchange of information is very less.
[14, 15]	•Validity of work •Personal blockchain	Health Image Data	Exchange of health records safely	•Elimination of information sharing

Table 1 Comparative stud	v of the integrated health	profiles for healthcare using blockchain.
Table 1. Comparative stud	y of the mitegrated health	promes for meaning are using blockenam.

CHAPTER 4

BCT-HC: Application of Healthcare Technology Using Blockchain Technology Hyperledger Fabric

N. Nasurudeen Ahamed^{1,*} and Tanweer Alam²

¹ Department of Information Systems & Security, United Arab Emirates University, Al Ain, United Arab Emirates

² Faculty of Computer & Information Systems, Islamic University of Madinah, Madinah, Saudi Arabia

Abstract: Blockchain innovation offers an information structure with built-in safeguards, including agreement, decentralization, and encryption, which ensure the accuracy of operations. It has broad use in a variety of fields, including smart factories, the Internet of Things (IoT), and healthcare. It is particularly relevant in the areas of healthcare information safety and privacy preservation. Digital healthcare records have been deployed faster because of communication technology, however, this has also increased risks to patient confidentiality, safety, and medical information. Another strategy to deal with the issue of medical data confidentiality and safety is the application of blockchain. Medical and health information includes treatment data gathered during patient care alongside private prevention of illness. Blockchain systems can be used in numerous capacities in healthcare organizations, including confidentiality and safety, to shield information about patients from unwanted access. Nevertheless, healthcare networks confront numerous security concerns, including connectivity, reliability, exchange of clinical information delivery, and patient deliberation, as a result of the inexperienced design of safety measures. Furthermore, deployment and information administration are the main issues for blockchain in healthcare due to the enormous amount of manufactured hardware gadgets. The platform is a communication mechanism that combines the use of computers with health records. It has been suggested that Hyperledger is the most developed collaborative chain technology. In contrast with various blockchain platforms, Hyperledger concentrates on developing enterprise-level standardized implementations. The Hyperledger framework is used for sensitive data in digital welfare, but neither restricted access nor thorough permission was taken into account. It is simple to determine fraudulent data collection by a malevolent person via confirmation of data by additional subjects, and the original, unmodified information can be recovered. Data can only be influenced if a bad person has access to over 50% of the blockchain network's nodes through security breaches, which is nearly unattainable. As a result, blockchain technology can stop information from being faked or falsified, improving the data's durability and dependability.

Shashi Kant Gupta, Joanna Rosak-Szyrocka, Amit Mittal, Sanjay Kumar Singh & Olena Hrybiuk (Eds.)

All rights reserved-© 2025 Bentham Science Publishers

^{*} Corresponding author N. Nasurudeen Ahamed: Department of Information Systems & Security, United Arab Emirates University, Al Ain, United Arab Emirates; E-mail: nasurmecse@gmail.com

Keywords: Blockchain, Decentralization, Digital healthcare, Encryption, Healthcare, Hyperledger, Hyperledger fabric, Internet of Things, Smart factory.

INTRODUCTION

Blockchain is essentially a distributed, decentralized electronic record that keeps track of activities safely and irreversibly. Blockchain innovation [1] operates on a network of peers, guaranteeing that no individual has total control over the data. This reduces the chance of information being altered or illicit access while boosting transparency. This feature is especially helpful in the field of healthcare, where patient confidentiality and security of information are crucial. The permanent nature of blockchain files adds a critical degree of safety for health information. Since every item or transaction on the blockchain is cryptographically linked to every other deal, amending previous data would need modifying each transaction that comes afterward. This unchangeable feature safeguards sensitive knowledge and health data, significantly reducing the likelihood of forgery and increasing the trust of patients. A full file of transactions is accessible to all participants in the network, facilitating regulatory adherence, product confirmation, and health information monitoring. The integration of computer science into healthcare [2, 3] gave rise to healthcare technology, which greatly enhanced healthcare. Blockchain computing has several uses in the medical field outside of patient information. These include medication safety, managing supply chains, sickness forecasting, medication accountability, claims processing, and others. The easy-to-use system and reliable environment of blockchain technology yield useful outcomes that increase parties' faith. The Hyperledger Fabric system (individual Blockchain) safeguards patient confidentiality and the integrity of their health information.

AN OVERVIEW OF BLOCKCHAIN TECHNOLOGY AND ITS VERSION

Blockchain is a decentralized technology that allows several parties to conduct operations and keep track of them in a record. It is based on a dispersed network of nodes that securely and irrevocably log and confirm events. Every node in the network confirms every payment as it gets recorded to the blockchain, and its record is copied among all of the nodes [3 - 5]. Blockchain has two types: one is permission, and another is permissionless. The example is listed as follows:

- Permissioned Blockchain: Hyperledger Fabric.
- Permissionless Blockchain: Ethereum.

Since its establishment, from the initial digital currency to the present blockchain-

BCT-HC: Application

based deployment for industry, blockchain technology has been utilized by numerous sectors as a component of the infrastructure of various enterprises that demand openness, honesty, and accuracy in Industry 5.0. Blockchain technology has advanced (Table 1) from version 1.0 to version 5.0, making it more trustworthy and appropriate for use in commercial settings and industrial uses.

Version	Description			
Blockchain 1.0	The innovative digital currency system was driven by the configurable currency known as the digital currency bitcoin. The virtual currency's transfer architecture is decentralized and key-based, which is how the blockchain system got its beginnings.			
Blockchain 2.0	Blockchain-based programs have become prevalent in social domains like banking, transactions among peers, data legitimate enrollment, property and trademark approval, and smart leadership. These applications are based on the expandable culture.			
Blockchain 3.0	It expands the use of blockchain technology for decentralized apps (DApps), enhancing productivity and trust among people through decentralization, non-tampering, and reliable collaboration.			
Blockchain 4.0	An advancement over the prior version that uses the consensus protocol to regulate network behavior and increase the viability of DApps for real-time business situations applicable the industrial age (IA) 4.0.			
Blockchain 5.0	The current version of the blockchain is regarded as an emerging generation due t eliminating conventional blockchain constraints and using simulated links for quick execution and more protection.			

Blockchain versions 1.0, 2.0, 3.0, 4.0, and 5.0 are in distinct deployment phases. They are all concurrent perspectives of growth, ranging from 1.0 to 5.0, and they have proper roles in various industries. Fig. (1) shows the extent of blockchain innovation advancement.

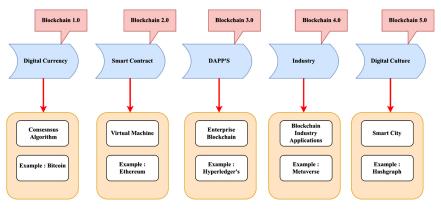


Fig. (1). The range of blockchain technology advancements.

CHAPTER 5

Impact of Blockchain-Enabled IoT Applications for Smart Agriculture and Healthcare to Promote Sustainable Economic Growth and Smart Health Management Ecosystem in Industry 5.0

Bhavneet Kaur Sachdev¹ and Sumanta Bhattacharya^{2,*}

¹ Calcutta University, Kolkata, India

² Maulana Abul Kalam Azad University of Technology, Kolkata, West Bengal, India

Abstract: Within the framework of Industry 5.0, the incorporation of blockchainenabled IoT applications into smart agriculture and healthcare has significant consequences for long-term economic growth and the creation of ecosystems for smart health management. The environmental, economic, industrial, and stakeholder implications of smart agriculture's transparent supply chains, which are made possible by blockchain technology and precision farming techniques, lessen the environmental impact of conventional farming by cutting down on resource use. Blockchain technology and Internet of Things (IoT) devices safeguard patient records, allowing for more eco-friendly procedures with less paper waste. These innovations maximize the use of agricultural resources, which boosts output while decreasing expenditures from an economic perspective. Better patient outcomes and lower healthcare costs are possible because of blockchain technology's assurance of data integrity and interoperability. This promotes a fairer and more inclusive economic climate, giving smaller players a voice. Innovation and integration are propelled by the industrial sector. By fostering an environment of open communication and cooperation, the tenets of Industry 5.0 aim to bring together many sectors of the economy to improve technological standards, strengthen cybersecurity, and standardize procedures. Awareness, training, and community participation are all made easier by stakeholders, which include NGOs. For these technologies to be adopted in an ethical and responsible manner, their advocacy for legislation that supports them and the protection of data ownership rights are vital. In the future, there will be more international cooperation, new technological solutions to problems with energy efficiency, and the creation of universal benchmarks.

Shashi Kant Gupta, Joanna Rosak-Szyrocka, Amit Mittal, Sanjay Kumar Singh & Olena Hrybiuk (Eds.) All rights reserved-© 2025 Bentham Science Publishers

^{*} Corresponding author Sumanta Bhattacharya: Maulana Abul Kalam Azad University of Technology, Kolkata, West Bengal, India; E-mail: sumanta.21394@gmail.com

Sachdev and Bhattacharya

Keywords: Agricultural resources, Advocacy, Blockchain, Cybersecurity, Community participation, Data integrity, Ecosystem, Eco-friendly, Economic perspective, Environment impact, Healthcare cost, Industry 5.0, International cooperation, Internet of Things, Paper waste, NGOs, Smart health management, Stakeholders, Smart agriculture, Technology.

INTRODUCTION

Blockchain-enabled Internet of Things (IoT) applications have the potential to revolutionise smart agriculture and healthcare. Blockchain and Internet of Things applications can improve supply chain visibility and auditability in the context of smart agriculture. Data from Internet of Things (IoT) sensors, such as those tracking soil moisture, temperature, humidity, and crop health, can be recorded and stored securely on a distributed ledger, giving stakeholders confidence in the reliability of data pertaining to agricultural practises and products. This not only promotes sustainable and ethical agricultural practises but also minimises the possibility of fraud by providing consumers with verified information about the origin and quality of agricultural products. Optimising resource utilisation is one way in which the adoption of blockchain and IoT in agriculture promotes longterm economic prosperity [1]. To guarantee that farmers are fairly compensated for their goods, smart contracts on the blockchain can streamline transactions and legal agreements. Increased agricultural output and profits may result from the greater ease and openness of financial dealings. Moreover, the information gathered by IoT devices may be used for data-driven decision-making, allowing farmers to implement precision agriculture practises that boost productivity while reducing environmental impact. A smart health management ecosystem can be established when blockchain technology is combined with the Internet of Things. Patient data obtained through IoT devices, such as wearable health monitors, can be securely kept on a blockchain. The confidentiality of patient information is protected while open communication between medical professionals is facilitated. Increased patient agency over their own health information supports care delivery centered on the individual. Automating procedures like insurance claims with blockchain-based smart contracts can cut down on paperwork and boost the healthcare system's productivity. Human-centered design and cutting-edge tech go hand in hand in the "Industry 5.0" paradigm shift. In this light, IoT applications enabled by blockchain are congruent with the goal of establishing interdependent ecosystems that put an emphasis on efficiency and sustainability. Blockchain transactions are transparent and safe, so everyone involved in agriculture and healthcare can trust the data being shared between their connected equipment [2]. Industry 5.0 is characterised by the rise of cooperative, networked systems that are capable of enhancing themselves. Blockchain's increased security and privacy

Impact of Blockchain

Blockchain-Enabled Internet of Things Applications in Healthcare 95

is a major selling point when applied to the Internet of Things. Sensitive data is generated and transferred in both smart agriculture and healthcare. The distributed ledger and cryptographic properties of blockchain technology guarantee that information cannot be altered and that only authorised users can access it. This not only promotes good data management practises but also protects the privacy of individuals' health information throughout the agriculture supply chain. It has a significant impact on smart agriculture and healthcare, fostering the growth of sustainable economies and new smart health management ecosystems [3]. As Industry 5.0 develops further, these technologies provide novel answers for the administration of agricultural operations and healthcare systems, with an emphasis on efficiency, transparency, and security.

ENVIRONMENT CONSIDERATION

There are major environmental issues with smart agricultural and healthcare systems that include blockchain and the IoT. In order to solve environmental problems, technical progress in these areas must be in line with sustainability objectives, making these factors critical. The Internet of Things (IoT) allows for the improvement of resource usage in smart agriculture through the use of devices like sensors, drones, and automated machinery. Because of this, farmers are able to use less water, fertiliser, and pesticide, leading to more efficient practices overall. This helps with sustainable farming and resource conservation by reducing the negative impact of conventional farming practices on the environment. The use of blockchain technology in smart agriculture improves eco-friendliness by creating a verifiable and transparent supply chain. By being open and honest about where their food comes from, consumers can rest certain that their food is not part of any unlawful or unsustainable methods that harm the environment [4]. With this information at their fingertips, shoppers can demand more sustainable agricultural techniques that are good for the environment. Blockchain and the Internet of Things (IoT) can also simplify healthcare operations, which in turn reduces the need for resources and the amount of waste produced. There will be less need for paper records thanks to digital health records kept on blockchain systems, which means less paper waste and less pollution. Wearable monitors and remote patient monitoring tools are examples of Internet of Things (IoT) gadgets that are finding use in healthcare. These devices allow for early detection and preventative interventions, which in turn reduce the environmental effect of emergency treatments and hospitalisations. By reducing energy waste and making better use of healthcare resources, this new proactive approach is environmentally friendly [5]. Health data stored on blockchain systems is decentralised and secure, which means less need for physical infrastructure like huge data centres. This means less energy use and a smaller carbon impact. With more and more healthcare systems turning to digital

CHAPTER 6

Stride-Based Threat Modeling for Blockchain-Based Healthcare Supply Chain Management System

S.V. Harish¹, K. Chandrasekaran^{2,*}, Rathnamma³, Usha Divakarla³ and Venkata Ramana⁴

¹ Manipal Institute of Technology, Manipal, Karnataka 576104, India

² National Institute of Technology Karnataka, Surathkal, Mangalore, India

³ KLM College of Engineering, Kadapa, Andra Pradesh, India

⁴ KSRM College of Engineering, Kadap, Andra Pradesh, India

Abstract: The increasing use of blockchain technology in supply chain management has made it imperative to understand the possible security risks associated with its implementation. This research aims to identify important security issues related to supply chain management's use of blockchain technology by doing a thorough analysis of the body of existing literature and looking at actual cases of blockchain deployments. These dangers include the possibility of data privacy breaches, smart contract weaknesses, and 51% attack vulnerability. The report also offers suggestions for reducing these risks, including using multi-factor authentication, regularly carrying out security audits, and enforcing strict access rules. The study's conclusions broaden our knowledge of the security risks associated with blockchain-based supply chain management (BC-SCM) and offer useful guidance to companies thinking about implementing this technology.

Keywords: Blockchain, Data privacy, Information security, Privacy, Supply chain management, Transparency.

INTRODUCTION

A key component of corporate operations is supply chain management, and blockchain technology is becoming more and more popular because of its ability to improve supply chains' efficiency, security, and transparency. Blockchain use

^{*} Corresponding author K. Chandrasekaran: National Institute of Technology Karnataka, Surathkal, Mangalore, India; E-mail: kch@nitk.edu.in

Stride-Based Threat

in supply chain management has several advantages, including the ability to preserve an immutable transaction record and lower fraud risk, but it also presents serious security risks.

Blockchain Technology

Blockchain, a decentralized ledger technology, has attracted a lot of interest because of its potential to revolutionize a number of sectors, including finance, healthcare, and logistics management. It basically works as an open, safe system for registering and confirming transactions. Typically, transactions on a blockchain network are thought of as cryptographically connected blocks that, thanks to sophisticated cryptographic methods, form a safe chain. Because blockchain is decentralized, no one party can have total control over the network, which makes it challenging to alter the data that is stored in the blocks. As a result, blockchain is already being heralded as a revolutionary technology with a wide range of possible uses, such as smart contracts and digital currency. Notwithstanding blockchain's potential benefits, implementation is challenging due to issues with scalability, security, and interoperability. The blockchain network is made up of numerous cooperating computers. There are thousands of exact copies of the blockchain since each computer, or "blockchain node", retains a copy of it. Because blockchain replication occurs automatically and a chain is built by hashing codes across blocks, it is difficult for an attacker to change the contents in any block. If one block is changed, the entire chain must also be changed, as well as at least 51% of the nodes' copies of the blockchain, which is not feasible when dealing with a big blockchain or its network.

A block consists of a header, a list of transactions, and a hash, as illustrated in Fig. (1). The header of a block contains essential information such as the block number, the date it was appended to the chain, and a distinct hash code generated through cryptographic means. This hash code serves to guarantee the integrity and unalterability of the block's data by acting as a cryptographic fingerprint. Additionally, the header includes a link to the preceding block's hash in the chain, facilitating the connection between blocks and the formation of a blockchain. A block's list of transactions includes details about the sender, recipient, the quantity of crypto currency, or other data being transferred. Once a transaction is confirmed, it is appended to the block's list of transactions. A network of nodes within the blockchain network frequently verifies the transactions. The inclusion of a block nonce typically simplifies the verification process, though it may necessitate the use of intricate algorithms and consensus mechanisms. Through a cryptographic hash function, any alteration, even a minor change of a single bit in the block contents, results in an unexpected and minute modification in the hash code

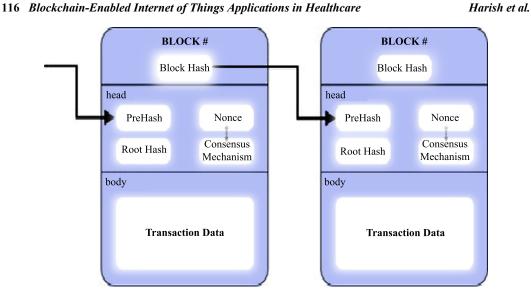


Fig. (1). Basic structure of a block in a blockchain.

In essence, the blockchain's block structure comprises a roster of validated transactions and a block header containing metadata and a link to the preceding block. This arrangement ensures the security, transparency, and immutability of the data stored in the blockchain.

Smart Contracts

Self-executing contracts, known as "smart contracts", are stored on a blockchain, a distributed ledger technology that facilitates safe, open transactions without the need for middlemen. Smart contracts are becoming more and more popular because of their ability to automate various company processes, do away with the need for middlemen, and increase operational performance. In addition, smart contracts provide an irreversible, transparent, and secure degree of integrity and trust that is unmatched by traditional contracts. Smart contracts have garnered substantial interest from scholars and practitioners in a range of industries, such as finance, insurance, healthcare, and logistics, in the past several years. When the conditions agreed upon by both parties are met, a smart contract can be thought of as a piece of self-executing code that only executes a predetermined set of instructions. This guarantees that after the contract is made, neither party may back out.

Supply Chain Management Systems

A supply chain is a well-planned and structured network that links a business to its suppliers in order to produce and market a particular product to consumers in

CHAPTER 7

Applications of Blockchain in Healthcare: State-ofthe-Art Survey

J. Sathish Kumar^{1,*} and M.V. Sanand¹

¹ Motilal Nehru National Institute of Technology, Allahabad, Prayagraj, India

Abstract: This survey provides a state-of-the-art survey of the applications of blockchain technology in the healthcare industry with a few case studies. It aims to explore the significance of blockchain technology in healthcare and its potential to enhance healthcare services in the context of federated blockchain. The paper covers background information on healthcare technology and the benefits, challenges, and limitations of using blockchain technology in healthcare. In this regard, we proposed provenance-based architecture, Hyperledger Fabric-based architecture, and integrated architecture, which contains Aadhar verification and patient history features in the context of India. Overall, the paper demonstrates that blockchain technology has the potential to improve the healthcare industry significantly, but more research and development are required to overcome the challenges and limitations.

Keywords: Blockchain, Cryptography, Cross-enterprise document sharing, Data integrity, Decentralized ledger technology, Digital identity, Distributed databases, EHR, eHealth, FHIR, Healthcare, Hyperledger fabric, IHE, Immutable data records, Interoperability, Medical records management, P4-medicine, Permissioned blockchain, Privacy, Security, Smart contracts.

INTRODUCTION

The blockchain is a decentralized and distributed ledger that stores transactions in a transparent and secure manner. The transactions are stored in a series of blocks linked together using the concept of hashing. The information stored on the blockchain is immutable and transparent. These properties of blockchain make it useful in various applications such as financial transactions, supply chain management, healthcare data management, *etc.* Blockchain technology can help transform the healthcare industry in various ways. It can streamline hospital operations and provide secure, transparent management of patient health records. To safeguard the patients' privacy and security, healthcare data must be protected

^{*} **Corresponding author J. Sathish Kumar:** Motilal Nehru National Institute of Technology, Allahabad, Prayagraj, India; E-mail: sathish613@mnnit.ac.in

Applications of Blockchain Blockchain-Enabled Internet of Things Applications in Healthcare 149

due to its highly sensitive nature. Blockchain technology provides secure and private data storage and sharing. It enables us to store patient data in an encrypted, decentralized way. This reduces the chance of a single point of failure and helps prevent security incidents. Another important benefit is that it facilitates interoperability across various healthcare providers. Healthcare data is often siloed and fragmented, making accessing and sharing important information difficult. By offering a safe and transparent platform for data sharing between various healthcare systems, blockchain technology aids in the resolution of this problem. Additionally, it can help lower administrative expenses and improve operations.

Technological developments such as electronic health records (EHRs), wearable devices, and telemedicine have enabled healthcare providers to deliver more efficient and effective patient care. EHRs, for instance, have streamlined the process for healthcare providers to store, retrieve, and share information about patients, leading to improved care coordination and reduced errors. On the other hand, patients are now able to receive medical care remotely with the advent of telemedicine, which is particularly useful for patients in rural or remote areas. Patients can now more easily monitor their health and wellness thanks to wearable technology, such as fitness trackers, which also give medical professionals useful information for preventive care. These technological advancements have also led to significant cost savings and improved patient care, making them a valuable asset to the healthcare industry.

The healthcare industry involves many stakeholders, including healthcare providers, payers, patients, and regulators. It is responsible for delivering the medical services and products essential for diagnosing, treating, and preventing diseases. It is constantly evolving, pushed by improvements in medical technology, changes in patient needs, and shifts in regulations and policies. However, the industry still faces many challenges, such as rising costs, increasing demand, etc. As a result, there is a growing need for innovative solutions to improve healthcare services' quality and affordability. Blockchain technology holds the potential to revolutionize the delivery, management, and financing of healthcare, making it a promising solution to the challenges faced by the industry. By enabling secure and transparent patient data management, blockchain technology can improve stakeholder coordination, reduce errors, and enhance patient care. It can also improve the privacy of patient data, protect against cyber threats, and enable interoperability between various healthcare systems and services. As such, healthcare organizations are increasingly exploring and adopting it to address the challenges and opportunities of the digital age.

This paper attempts to present a comprehensive overview of the innovative applications of blockchain in the healthcare industry. We will also explore its potential benefits and examine the challenges. We also present case studies of successful implementations and identify the prospects for using blockchain in healthcare. By delivering a thorough understanding of the applications of blockchain in healthcare, we aim to inform healthcare providers, policymakers, and researchers about the potential of this technology to transform the healthcare sector and enhance patient care.

LITERATURE REVIEW

Several studies have investigated the possible uses of blockchain technology in healthcare and have identified its benefits and challenges [1]. Bittins *et al.* [2] presented a blockchain-based architecture that aims to improve the trust in existing data transfer solutions built on the IHE technical standards. The authors discuss how blockchain is able to improve trust in medical information-sharing procedures by automating provenance tracking and accountable credential verification, and they situate the latest research findings within the regulatory and technical standard frameworks for healthcare, such as IHE and FHIR. As an inspiring and insightful case study, the data exchange methods associated with international organ transplant operations are used. The authors explain how their blockchain-based architecture incorporates SSI credential verification using the EBSI infrastructure and automatically generated provenance annotations for patient medical data using the W3C PROV standard. The integrity of data interactions among communities is improved by this principled integration. The authors also draw attention to the legal specifications that should be incorporated into the planning and implementation of blockchain-based healthcare services of the future. Incorporating SSI into various healthcare settings can result in services that are more adaptable and convenient for patients. The development of reproducible clinical research can be supported by automatic provenance management, and SSI can open the door to the adoption of the "Once Only Principle" in the healthcare industry. Ciampi et al. [3] explored the possibility and difficulties of incorporating the FHIR standard with distributed ledger technologies (DLTs). The authors mention a longitudinal record and a "smart care plan," which are concepts outside the purview of EHR systems, as crucial advances in the direction of predictive, preventive, personalized, and participatory (P4-medicine). The authors claim that the certification and verification of clinical events for the advancement of health processes can be accomplished through the integration of FHIR in DLTs. They also provide examples of how blockchain technologies might be utilized to uphold the integrity of workflows linked to FHIR resources and their authentication. The authors conclude that utilizing FHIR for the specific scenario of dynamic care planning, as described by the IHE DCP

CHAPTER 8

Blockchain-Powered Monitoring of Healthcare Credentials through Blockchain-Based Technology

Rahul Joshi^{1,*}, Shashi Kant Gupta², Rajesh Natarajan³, Krishna Pandey¹ and Suman Kumari¹

¹ Department of Journalism & Mass Communication, SMeH, Manav Rachna International Institute of Research & Studies, Faridabad, Haryana, India

² Computer Science and Engineering, Eudoxia Research University, New Castle, USA

³ Department of Information Technology, University of Technology and Applied Sciences, Shinas, Oman

Abstract: The healthcare industry is using the Internet of Things (IoT) extensively. The healthcare sector manages sensitive information, including an individual's medical history, blood pressure, and other relevant data. Consequently, the technologies used in this domain are becoming more susceptible to attacks because of their heightened sensitivity. Therefore, it is essential to protect the data. Blockchain technology has been shown to provide substantial benefits in achieving this goal. Incorporating blockchain technology into IoT devices has yielded substantial benefits, thanks to notable technical progress. This chapter thoroughly examines the characteristics of blockchain technology that enhance its efficiency in managing sensitive data and ensuring data security and privacy. Furthermore, this chapter systematically explains the region's many security obstacles and how blockchain technology might successfully overcome them. The study's results indicate that future research should explore how gender, age, and knowledge of blockchains affect the adoption of blockchain technology in innovative healthcare systems. An alternate field of research involves evaluating the many elements that influence the adoption of the technology known as blockchain.

Keywords: AI, Adoption, Blockchain, Clinical, Deep learning, Electronic health record, fraud, IoT, Interoperability, Medical supplies, Monitoring, Research, Smart contracts, Privacy, Pos, Patient, Security, Technology, Tracing, Trail.

INTRODUCTION

The emergence of blockchain technology and its core features of decentralization, transparency, and pseudonymity coincided with the introduction of the Bitcoin cryptocurrency in 2008 [1]. With around 400 million transactions successfully

^{*} Corresponding author Rahul Joshi: Department of Journalism & Mass Communication, SMeH, Manav Rachna International Institute of Research & Studies, Faridabad, Haryana, India; E-mail: rahuljoshi.785@gmail.com

Blockchain-Powered

Blockchain-Enabled Internet of Things Applications in Healthcare 171

executed as of March 19, 2019 [2], Bitcoin is a convincing illustration of how blockchain technology may be used. The substantial discussion and proposal of using blockchain technology in data-intensive areas, such as healthcare, has been well-documented [3]. IBM's study found that 70% of healthcare professionals expect blockchain technology to impact the health sector significantly. This impact would be seen in areas such as enhancing regulatory compliance, managing clinical trials, and creating a decentralized platform for exchanging electronic health records [4]. Moreover, the market worth of blockchain applications in the healthcare industry is estimated to exceed \$900 million by 2024. While there is a general belief that blockchain has the potential to enhance healthcare IT, the existing study offers only a restricted comprehension of the designed, evaluated, or implemented applications. Moreover, the current enthusiasm around this technology has fostered notions and tactics that may be more practical and well-founded. When assessing the suitability of blockchain technology in the healthcare industry, which encompasses healthcare, biological medicine, and medical education, it is essential to evaluate if existing research correlates with expected results. Moreover, it has been used in financial services, logistics, energy, commodities trading, healthcare, and more. Using blockchain technology, a safe and immutable system may be established to track the origin and path of medicines, aiding in the battle against the widespread distribution of counterfeit drugs. Blockchain-based distributed shared data systems enable several participants in the supply chain to store and exchange transaction records securely. The use of cryptographic techniques enables the restriction of ledger access to authorized entities while preventing unauthorized entities from gaining entry. It offers a method to prevent the dissemination of counterfeit pharmaceuticals across the pharmaceutical supply chain. This approach oversees and regulates the distribution of fraudulent pharmaceuticals. This chapter analyzes the use of blockchain technology in medication monitoring, examines its advantages and disadvantages, and studies several possibilities for protecting the supply chain of drugs.

HISTORICAL BACKGROUND OF BLOCKCHAIN

Blockchain is a distributed and unchangeable record that keeps track of transactions. It obviates the need for a reliable intermediary to facilitate communication between parties. The blockchain is a type of decentralized digital ledger that maintains an expanding information collection, known as "blocks", sequentially. Once these blocks are included in the blockchain, cryptographic techniques establish connections between them and the preceding and subsequent blocks [5]. When adequately executed, blockchain enables universal access to reading, writing, and verifying the integrity of a data block. Due to these characteristics, blockchain is being contemplated for various applications.

Blockchain technology enables the implementation of smart contracts, eliminating the need for third-party oversight [6]. Bitcoin and other cryptocurrencies pioneered a revolutionary technology known as blockchain in 2008-2009 [7]. It offers various operations in banking, healthcare, transportation, and government, among other areas. This contemporary advancement allows us to meticulously monitor our belongings methodically and securely, beyond any previous methods [8, 9].

INTEGRATE IOT DEVICES WITH BLOCKCHAIN

The secure management of real-time, irrefutable patient health metrics and surrounding environmental factors essential to the effective delivery of healthcare is transformed through the integration of IoT devices with blockchain technology. Wearable health monitors, smart medical devices, and environmental sensors are examples of Internet of Things (IoT) devices that collect a variety and volume of data from patient vital signs and physical activity to medication adherence and air quality and temperature in the surroundings. This information is necessary to be able to offer treatment quickly and effectively. Due to the magic of blockchain technology, this data can be documented and stored on a distributed and immutable ledger, making it untouchable and impossible to tamper with. Now, when IoT data are stored on the blockchain, they are securely authenticated because of the cryptographic hashing, and no unauthorized party is allowed to access these data, owing to the consensus processes e.g., Proof of Authority or Practical Byzantine Fault Tolerance that underpin the blockchain network. Combining IoT and blockchain technologies facilitates real-time data mining with the safekeeping of patient information, making it transparent and tamper-proof, as well as the dependability and precision of patient information, thereby empowering healthcare providers to make evidence-based decisions and deliver more personalized therapies. This will allow patients a higher level of abstraction of data to be more securely shared and maintained, reducing privacy concerns and building trust. Second, by gathering data on the environment, it is possible to better understand and combat environmental health factors, such as pollution or extreme temperatures, and provide full care service. It also directly relates to the betterment of patients, increased data security, and better functioning of healthcare processes.

INCREASING IMPORTANCE OF BLOCKCHAIN FOR HEALTHCARE

The healthcare business increasingly relies on assistance from other areas, such as computer science, which may significantly contribute to this domain [10]. This encompasses a wide range of fields, such as genomics, gene prediction, electronic health records, and the development of disease diagnostic tools [11]. Public health

CHAPTER 9

Revolutionizing Hen Care in Smart Poultry Farming: The Impact of AI-Driven Sensors on Optimizing Avian Health

P. Deepan^{1,*}, R. Vidya¹, N. Arul¹, S. Dhiravidaselvi² and Shashi Kant Gupta³

¹ Department of CSM, St. Peter's Engineering College, Hyderabad-500043, India

² Department of CSE, Roever Engineering College, Tamil Nadu-621212, India

³ Computer Science and Engineering, Eudoxia Research University, New Castle, USA

Abstract: Automation is taking over the entire globe. To boost efficiency, businesses, governments, and nonprofits are all using automation in their own fields. The demand for and necessity of automation is high in the agricultural industry. The majority of nations have begun to supply and use smart farming solutions. This proposed study focuses on smart poultry farming, an essential aspect of farming, and designs a new prototype. A number of Indian farmers keep chickens as pets, yet their farms' output, longevity, efficiency, and treatment of animals are all lacking.

Therefore, sustainable and lucrative farming is the outcome of integrating cutting-edge technology such as robotics, Internet of Things (IoT) sensors, and artificial intelligence (AI). This prototype incorporates a number of Internet of Things (IoT) sensors for several features, such as lighting (LDR), air quality (MG135), water quality (pH), temperature (DTH11), and lighting (LDR). Minimizing human intervention, keeping tabs on the bird's well-being, making the most of available resources, and increasing output are all outcomes of the automated system's development. With the help of an AI-IoT smart system, poultry producers will be able to manage their farms more efficiently and triumph over a number of obstacles.

Keywords: Agricultural, Automation, Artificial intelligence, Hen health, Internet of Things, Poultry farming, Smart farming, Sensors.

INTRODUCTION

Agriculture is the backbone of the Indian economy. Many Indians rely on agriculture as their primary source of income. Integrating smart technologies into

^{*} Corresponding author P. Deepan: Department of CSM, St. Peter's Engineering College, Hyderabad-500043, India; E-mail: deepanp87@gmail.com

Revolutionizing Hen Care Blockchain-Enabled Internet of Things Applications in Healthcare 201

traditional farming methods enhances overall productivity and increases the income of the farmers [1 - 5]. Poultry farming is a broader idea behind smart agriculture. It focuses on raising chickens for meat production and egg production. New techniques and technologies are added to every stage of traditional poultry farming practice to overcome traditional farming limitations and optimize productivity, efficiently utilize resources, and focus on the welfare of animals [6 - 9].

Smart poultry farms consist of different sensors, tools, and techniques to build an optimized and automated farming technology for farm management. The main goal behind such smart farms is to enhance efficiency and productivity. There are several factors that need to be considered in designing a prototype [10, 11]. They include an environment that is automatically monitored and controlled using sensors and IoT devices. The environmental attributes taken into consideration are temperature, humidity, ventilation, water quality, and lighting [12 - 14]. The physical attributes recorded are the chicken's health and feed. The chickens that are kept only under an optimal setup will yield enhanced productivity. The observations are monitored and stored at repeated intervals of time. This data can be further used to extract insights into poultry farms and derive trends and patterns for further decision-making processes. The health of the chicken is interrelated to all other parameters [15 - 17]. An automated system to operate and control the poultry farm is designed to concentrate on the food requirement, monitor health and nutritional information, and check on the water quality and continuous supply of water [18 - 21]. The focus is on checking the temperature, humidity, and lighting of the environmental setup of the poultry farm. An automated egg collection system to reduce manpower can be designed to collect the eggs from the poultry farm, segregate the eggs based on their quality, and dispatch them for sale [22]. The poultry farm can be monitored and controlled from a remote location. Real-time updates and alert messages are sent through mobiles to the corresponding person of the poultry farm. The overall farm management can be improved by integrating automation techniques, streamlining farm operations, optimizing the utilization of resources, remote monitoring, and enhancing animal care [23 - 26].

Several factors have contributed to the requirement for this kind of smart poultry farming system, including the rising demand for poultry products like meat and eggs, the efficient use of energy, the constant monitoring of animal health, the difficulties and issues posed by a lack of labor, and the need for early disease detection to prevent financial losses [27]. There are several challenges in designing and successfully setting up a poultry farm for Indian farmers. Very detailed and broader background research on proper planning on the infrastructure size and capacity, area and environment to set up the poultry farm, automation

Deepan et al.

techniques to be implemented, sensors to be used, and health and welfare monitoring techniques are required [28].

Smart poultry farms will provide a promising livelihood for Indian farmers. It will lead to the development and sustainable growth of the agricultural sector and enhance the overall Indian economy. The Indian farmers should learn, adopt, and implement smart techniques in the poultry farms for a successful outcome.

Limitations in Traditional Poultry Farming

Traditional poultry farming has the following problems:

- Traditional poultry farming requires more manpower to maintain the farms.
- Difficult to monitor the climate conditions earlier.
- Earlier bird disease prediction and identification are very difficult in traditional poultry farming.

The integration of smart poultry automated systems can be made possible through APIs to manage different software activities.

Background of the Invention

Agriculture is the backbone of the Indian economy. Many Indians rely on agriculture as their primary source of income. Integrating smart technologies into traditional farming methods enhances overall productivity and increases the income of the farmers. Poultry farming is a broader idea behind smart agriculture. It focuses on raising chickens for meat production and egg production. New techniques and technologies are added to every stage of traditional poultry farming practice to overcome traditional farming limitations and optimize productivity, efficiently utilize resources, and focus on the welfare of animals.

The need for this kind of smart poultry farming system is triggered by several factors like increased demand for poultry products like meat and eggs, proper utilization of energy resources, continuous monitoring of animal health, challenges and issues in facing a labor shortage, and early disease detection to prevent financial losses.

Challenges in Poultry Farming

Environmental factors, dust, and fluctuation can affect the accuracy of the sensors; therefore, we need to maintain the sensors to ensure reliability.

Deep Learning-Powered Visual Augmentation for the Visually Impaired

Gandrapu Satya Sai Surya Subrahmanya Venkata Krishna Mohan^{1,*}, Mahammad Firose Shaik², G. Usandra Babu³, Manikandan Hariharan⁴ and Kiran Kumar Patro¹

¹ Department of Electronics and Communication Engineering, Aditya Institute of Technology and Management, Tekkali, India

² Department of Electronics and Instrumentation Engineering, Velagapudi Ramakrishna Siddhartha Engineering College, Deemed to be University, Vijayawada, India

³ Department of Electronics and Communication Engineering, Aditya University, Surampalem, Andhra Pradesh, India

⁴ CMR Institute of Technology, Bangaluru, India

Abstract: The interdisciplinary convergence of computer vision and object detection is pivotal for advancing intelligent image analysis. This research surpasses conventional object recognition methodologies by delving into a more nuanced understanding of images, akin to human visual comprehension. It explores deep learning and established object detection systems such as convolutional neural networks (CNN), Region-based CNN (R-CNN), and you only look once (YOLO). The proposed model excels in realtime object recognition, outperforming its predecessors, as previous systems typically detect only a limited number of objects in an image and are most effective at a distance of 5-6 meters. Uniquely, it employs Google Translate for the verbal identification of detected objects, offering a crucial accessibility feature for individuals with visual impairments. This study integrates computer vision, deep learning, and real-time object recognition to enhance visual perception, providing valuable assistance to those facing visual challenges. The proposed method utilizes the Common Objects in Context (COCO) dataset for image comprehension, employing object detection and object tracking with a deep neural network (DNN). The system's output is converted into spoken words through a text-to-speech feature, empowering visually impaired individuals to comprehend their surroundings effectively. The implementation involves key technologies such as NumPy, OpenCV, pyttsx3, PyWin32, OpenCV-contribpython, and winsound, contributing to a comprehensive system for computer vision and audio processing. Results demonstrate successful execution, with the camera consistently detecting and labeling 5-6 objects in real time.

^{*} Corresponding author Gandrapu Satya Sai Surya Subrahmanya Venkata Krishna Mohan: Department of Electronics and Communication Engineering, Aditya Institute of Technology and Management, Tekkali, India; E-mail: gandrapu.krishnamohan@gmail.com

Deep Learning-Powered

Keywords: Accessibility technology, Assistive technology, Artificial Intelligence, Computer Vision, COCO data Set, Deep learning, Deep object analysis, DNN, Google Translator, Human-like object understanding, Image understanding, Inclusive design, IoT, LiDAR, Multimodal object interaction, NumPy, Object detection, Real-time object recognition, Text to speech, Visual impairment assistance.

INTRODUCTION

As artificial intelligence (AI) and the Internet of Things (IoT) advance rapidly, numerous smart devices can link with one another [1]. Various innovative concepts, such as 'Smarter Planet', 'Smart City', 'Smart Community', and 'Smart Campus,' have emerged and integrated into various aspects of human life.

The human eye plays a vital role in the visual system, but it is also susceptible to external factors, including potential exposure to pathogens. The eyes can serve as an entry point for certain viruses to infiltrate the body, leading to possible eye diseases and vision impairment [2]. The World Health Organization (WHO) estimated that by 2019, more than 220 million people worldwide would experience visual impairment, presenting substantial daily challenges [3]. While the traditional white cane remains a widely used tool for the visually impaired [4], it has notable limitations and safety concerns. Therefore, the objective of this work is explicit and compelling: to develop a cost-effective and highly efficient solution that empowers visually impaired individuals to navigate their surroundings with increased ease, speed, and confidence.

Visual impairment is not solely related to issues with the eyes; it can arise from various factors. Common causes include challenges with eyesight, the development of cataracts, problems in the rear part of the eye, or issues with the optic nerve. Individuals experiencing visual impairment often encounter numerous challenges in their daily lives. Limited vision can result in difficulties in safely crossing roads, determining when to proceed at traffic lights, or navigating around obstacles. For educational pursuits, those with visual impairment typically need to learn braille, a tactile system of raised dots. Even routine tasks, such as visiting a doctor, become challenging as they rely on touch and hearing to navigate their surroundings.

In today's context, AI is a prominent and rapidly advancing field. Focused on imbuing systems with intelligence, AI is anticipated to play a substantial role in the future [5]. The progression of AI is driven by the abundance of data and powerful computing resources. Its applications extend across various domains, including retail and delivery services. In the retail sector, AI facilitates inventory management by tracking stock levels and identifying popular items, thereby enhancing the overall shopping experience. Moreover, AI can deliver personalized product recommendations based on individual preferences. In the realm of delivery services, AI excels in planning the most efficient routes for transporting items from one location to another.

AI is significantly reshaping the landscape of education by providing valuable tools for teachers to gauge students' progress and offer tailored support based on individual needs. This personalized approach enhances the learning experience for each student. In the realm of security, AI stands as a powerful ally for law enforcement. Its advanced image processing capabilities enable the identification of suspects in surveillance videos, contributing to more effective and efficient investigations. Moreover, AI plays a crucial role in the surveillance of buildings, promptly alerting authorities to any unusual activities and bolstering overall security measures.

Incorporating AI into ophthalmological practices revolutionizes the landscape of eye care, offering unprecedented opportunities for early intervention and precision medicine. The seamless integration of AI algorithms with contact fundus examination devices streamlines the diagnostic process, empowering clinicians to deliver timely and tailored interventions. Moreover, AI-driven analysis of fundus images enables the detection of subtle abnormalities that may escape human observation, ensuring comprehensive assessment and treatment planning. As the field continues to evolve, the collaborative efforts between AI technology and medical expertise promise to redefine standards of care and elevate the quality of life for patients with ocular conditions.

LITERATURE REVIEW

Cheng and colleagues have put forth a holistic strategy to improve visual localization for individuals with visual impairments [6]. Their established system comprises diverse components, such as a profound descriptor network, validation of 2D–3D geometry, and real-time sequence matching. The process involves the integration of a dual descriptor network with RGB, infrared, and depth images, allowing for the creation of resilient, contextually rich descriptors and local features.

Researchers associated with Springer-Verilog have introduced an innovative LiDAR-based technique designed for the effective prediction of distances and precise measurement of obstacles [7]. Their approach involves employing a lightweight deep learning model, specifically customized for obstacle detection, known as EfficientDet-LiteV4. The anticipated distances are calculated by analyzing depth maps generated by LiDAR. To assess the efficacy of their approach, they implemented it on a Raspberry Pi4 platform integrated with Li-

CHAPTER 11

AI-Assisted Crop Management Using the LSTM Model in Smart Farming

Prabakaran Natarajan^{1,*}, Abhijai Rajawat¹, Akshat Chaube¹, Anshul Mahlavat¹ and Ramanathan Lakshmanan¹

¹ School of Computer Science and Engineering, Vellore Institute of Technology, Vellore 632014, India

Abstract: The use of information and communication technologies in agriculture to increase productivity, efficiency, and sustainability is known as smart farming. The implementation of predictive analytics and data-driven insights in smart farming enhances the effectiveness of agricultural systems as a whole, decision-making processes, and resource allocation. This study compares the use of the algorithms long short-term memory (LSTM), support vector machine (SVM), deep belief network, Naive Bayes, artificial neural network (ANN), and gated recurrent unit (GRU) in optimizing agricultural operations. The study highlights how using LSTM in smart farming has the ability to transform traditional agricultural methods, resulting in sustainable, higher-yield output while minimizing resource loss and environmental impact. Smart farming has emerged as a new approach for modernizing and optimizing agricultural practices through the integration of cutting-edge technology, with a focus on machine learning in particular. Various algorithms were applied to this dataset, producing measurable results like accuracy, loss, correct detection rate (CDR), and false discovery rate (FDR). Through an extensive comparative study, it was identified that the long short-term memory (LSTM) algorithm was the most promising choice for the dataset. Following the application of machine learning algorithms on different training to test splits like 80-20, 70-30, 65-35, 60-40, and 55-45, it was found that LSTM has the best accuracy on average, ranging from 95% to 98%. The exploration of LSTM demonstrated its potential to significantly enhance decision-making processes for farmers and researchers, ultimately improving agricultural efficiency and outcomes.

Keywords: Artificial intelligence, Artificial neural network, Correct detection rate, Deep belief network, False discovery rate, Gated recurrent unit, Hyperparameter tuning, Logistic regression, Long short-term memory, Machine learning algorithms, Model architecture enhancements, Naive bayes, Posterior probability, Precision agriculture, Random forest, Rectified linear unit, Smart farming, Support vector machine, Sustainability, Yield optimization.

^{*} Corresponding author Prabakaran Natarajan: School of Computer Science and Engineering, Vellore Institute of Technology, Vellore 632014, India; E-mail: dhoni.praba@gmail.com

Smart Farming

INTRODUCTION

When it comes to precision agriculture, where every decision and piece of information are highly relevant, the LSTM (Long Short-Term Memory) algorithm is the cornerstone of innovation. Modern technology has sparked a revolution in agriculture, transforming conventional farming methods into ones that are more effective and sustainable. Intelligent crop management, a multifaceted strategy that seamlessly combines cutting-edge technology [1], most notably machine learning (ML) and the strength of LSTM algorithms [2], is the foundation of smart farming. The key to this agricultural transformation is to carefully optimize procedures and maximize harvests while using as little of the planet's resources as possible. Farmers now have access to the priceless tool of precision agriculture thanks to ML, particularly in the context of that practice.

Farmers now have the power to precisely apply fertilizers, pesticides, and other inputs in strict conformity with regional requirements thanks to LSTM algorithms. These algorithms examine the minute details of soil properties and crop features to produce individualized recommendations that promote the wise use of resources while simultaneously reducing the damaging environmental impact. This well-planned strategy, made possible by LSTM-driven ML, provides a double benefit. On the one hand, prices are successfully lowered, and on the other, sustainability takes center stage with a much lower chance of soil damage. In addition, LSTM algorithms are skilled at keeping track of soil moisture levels, incorporating weather forecasts, and tracking the changing requirements of plants to optimize watering schedules. The conventional distinction between resource conservation and agricultural output is effectively blurred by this finely tuned precision, which not only preserves limited water supplies but also ushers in increased crop yields [3]. LSTM algorithms go even further in the constantly changing world of agriculture, where data-driven insights are the key to success. They are essential for accurate yield estimation and careful crop monitoring. These algorithms examine data from a variety of sources, including satellite imaging and sensor data, and have the ability to analyze crop growth patterns, identify nutrient deficiencies, and compute crop yields [4]. With the abundance of knowledge they now possess, farmers are better able to plan their markets and identify the best time to harvest their crops, thus increasing profitability and ushering in a new era for agriculture.

FACTORS

Phosphorus Level of Soil

A crucial macronutrient for plants, phosphorus is necessary for several physiological activities. Integrating soil phosphorus levels into crop prediction

models leads to a more comprehensive understanding of nutrient dynamics [5] and facilitates informed decisions regarding fertilization strategies, soil management practices, and overall nutrient optimization.

Potassium Level of Soil

An essential component for the growth and development of plants is potassium. It is engaged in several crucial plant processes, including the movement of nutrients and water throughout the plant, control over the growth and development of the plant, energy storage, and resistance to disease and pests [6].

Temperature

One of the most significant variables influencing crop growth is temperature. Farmers can calculate how much water and fertilizer they will require by knowing the typical temperature for the growing season. They may schedule the planting and harvesting of crops using temperature data as well [7].

Humidity

Humidity, defined as the amount of moisture present in the air, influences several critical physiological processes in plants, including transpiration, stomatal conductance, and photosynthesis. By considering humidity as a key variable in crop prediction models, deeper insights into the moisture stress experienced by crops can be gained, enabling more accurate predictions about their growth, yield potential, and overall health [8].

PH of Soil

The pH of the soil indicates how acidic or alkaline it is. Various soil pH values are preferred by different crops. Plants may find it difficult to absorb nutrients if the pH of the soil is too high or too low, which could result in stunted growth, low yields, or even death.

Rainfall

Most of the previous irrigation systems did not take weather forecasting information into account when choosing irrigation strategies [9]. When rain is promptly followed by crop irrigation, it wastes freshwater and energy and stunts crop growth. By utilizing weather forecasting data, ML-based solutions can handle these situations and improve irrigation decision support.

CHAPTER 12

Automated Production Management in Horticulture: An Industry 4.0 Perspective

Archna^{1,*}, Gursharan Singh², Nidhi Bhagat¹ and Sakshi Thakur¹

¹ Mittal School of Business, Lovely Professional University, Phagwara, India ² School of Allied Medical Sciences, Lovely Professional University, Phagwara, India

Abstract: The whole industry has changed as it progresses from 1.0 to 4.0 in accordance with regulations. Horticulture has seen tremendous advances in automated technology production management, which has revolutionized crop cultivation and management techniques. These technological developments have improved product quality, increased crop productivity, decreased labor costs, and reduced negative environmental consequences. The purpose of this book chapter is to investigate the current state of automated production management in horticulture, including its applications, techniques, and potential future directions. This chapter presents an overview of how technology is being used in automated production management, such as robotic harvesting, sensor-based monitoring, and precision irrigation. In addition, the chapter investigates the possible benefits and future possibilities of automated production management in horticulture. It focuses on developing trends, such as the incorporation of artificial intelligence and machine learning algorithms, which can improve decision-making processes and resource allocation. Data analytics, remote sensing, and Internet of Things (IoT) technologies are also covered for real-time monitoring and system optimization. Some aspects of automated horticulture are also investigated, such as crop diversity, development phases, and environmental variables.

Finally, this book chapter presents a complete review of automated production management in horticulture, emphasizing the industry's disruptive significance. It also tackles farmers' and researchers' existing issues with automated horticulture production systems. Horticulture stakeholders may improve productivity, sustainability, and profitability by embracing automated production management in an increasingly competitive and resource-constrained environment.

Keywords: Controlled environment agriculture, Integrated pest harvesting, Precision irrigation, Post harvesting, Remote monitoring, Robotic-crop care.

^{*} Corresponding author Archna: Mittal School of Business, Lovely Professional University, Phagwara, India; E-mail: makkerarchana@gmail.com

THE ORETICAL BACKGROUND

It is anticipated that there will be nine billion people in the world by 2030. The majority of population increase will occur in developing countries in Asia, Africa, and Latin America, where hunger and food scarcity are issues. Horticulture is underdeveloped in the majority of African countries. The region's food priority may be addressed by focusing attention on key horticulture crops and critical challenges. Food shortages, distribution, nutrition, a country's or region's competitive edge, constraints on local and export marketing, and industry strategic planning, including institutional, regulatory, and technological improvements, are some of the primary challenges. This paper discusses the constraints and benefits of combining nutrition education with agricultural research aims, as well as the huge potential of horticulture crops in addressing food scarcity and malnutrition in Africa [1]. The article describes a less costly and labor-intensive method of clonal propagation that uses modified air-lift, bubble column, bioreactors (a balloon-type bubble bioreactor), and temporary immersion systems for the propagation of shoots, bud clusters, and somatic embryos. It explains how to grow Anoectochilus, apple, ginseng, garlic, grape, Lilium, Phalaenopsis, and potatoes. This chapter addresses bioreactor features and the design of bioreactor procedures for automated mass multiplication of diverse plant crops. It also highlights new research aimed at increasing the automation of the bioreactor manufacturing process [2]. Growers are having a difficult time right now because they are under pressure to improve the quality of their products owing to worldwide competition. New safety and procedural regulations must be followed all the way up the food chain. Everyone should prioritize reducing the negative environmental consequences of the industrial cycle in all aspects of life. In general, agriculture has been urged to reduce production costs in order to compete and live on government aid. Almost everywhere in the globe, there are suppliers for the processing industries. New players are eager to emerge and take on crucial responsibilities all across the world. Fresh food distribution has benefited from technology in previously unimaginable ways [3]. The horticulture sector has historically transformed the landscape of the United States through planned cultivar introductions as well as unintended introductions of weeds, insects, and plant diseases. The sales of established invasive plants persist, and the number of new cultivars introduced annually is rising despite the fact that the horticultural sector—especially, the ornamental subsector-has been demonstrated to play a major role in the introduction and spread of invasive species. This study characterizes the distribution channel's complexity and investigates the horticulture trade as a vector for invasive species and associated agents. The recent increase in commercialized cultivars has been linked to a variety of causes, including technological breakthroughs, industrial development, and marketing initiatives. As a result, consumer demand has increased and

Archna et al.

become more sophisticated, resulting in an intense hunt for novel crops across the world. Many of these crops are introduced into the market without being fully assessed for invasive potential. Traditional techniques for managing invasive horticulture crops (regulation, self-regulation) have had limited effectiveness and buy-in because they overlook the industry's intricacies and financial motivations. These methods concentrate on distributors both before and after crop release [4]. The study examined the productivity of agricultural crops under the conventional agri-horticulture system, as well as the structure, composition, and diversity of fruit tree and shrub species in the mid-hill region of the Garhwal Himalaya, India, between 1000 and 2000 m asl during the summer and winter seasons on the northern and southern aspects. Depending on the aspect, landholding, and farmer requests, the system's tree density, composition, and diversity varied. Twelve fruit tree species were identified in the agri-horticulture system; four of these were found to be common in both the northern and southern aspects, while the other six were found to be common exclusively in the northern aspect and the other two in the southern. It was found that the apple tree (Malus domestica) had the greatest IVI values on both the northern and southern sides [5]. Horticultural crops, with high yields and export value, play an important part in world nutrition. However, the sector is confronted with issues like resource shortages, global warming, and the impact of the COVID-19 pandemic. To solve these concerns, smart farming, sustainable agriculture, and precision farming are becoming more popular. Digitization, robotics, automation, artificial intelligence, and IoT are key to attaining sustainable production and solving obstacles ranging from farming to marketing. The review emphasizes the importance of transitioning to high-tech horticulture to ensure productivity and economic stability in the face of changing climate, growing population, and consumption patterns, advocating for machinery and automation to meet global demand. When compared to typical fluorescent lighting, LED treatments consistently resulted in better plant biomass, fruit output, and energy usage efficiency. Notably, LED illumination increased the antioxidant content of basil leaves while decreasing the nitrate concentration. The study discovered that a red:blue ratio of 0.7 is required for good plant growth and better nutraceutical qualities in both leafy and fruit vegetable crops. Overall, the data show that LED technology has the potential to improve production and nutritional quality in indoor farming [6]. This analysis looks at the historical backdrop and future implications of the industrial and agricultural revolutions, with an emphasis on the difficulties and opportunities of adopting Industry 4.0 in agriculture. While Industry 4.0 has grown quickly in the industry, debates regarding Industry 5.0 have already begun, in contrast to agriculture adoption's sluggish growth. The study emphasizes the disparity in influence between big firms and small- to medium-sized enterprises (SMEs) in both sectors, stressing the challenges that SMEs confront in keeping up with fast technological progress. The report closes

Revolutionizing Agriculture through IoT-Enhanced Data Analytics: A Study from a Blockchain Technology Perspective

S. Sivabalan^{1,*}, R. Renugadevi¹, G. Kalaiarasi², R. Rathipriya³ and A. Loganathan⁴

¹ Computer Science Engineering, School of Computing and Informatics, Vignan University, Guntur, Andhra Pradesh, India

² Advanced Computer Science Engineering, School of Computing and Informatics, Vignan University, Guntur, Andhra Pradesh, India

³ Department of Computer Science, Periyar University, Salem, Tamil Nadu, India

⁴ Department of Science and Humanities, Vignan University, Guntur, Andhra Pradesh, India

Abstract: The emergence of interconnected systems, blockchain approaches, and the Internet of Things (IoT) is creating novel possibilities for information-driven choices in agricultural production. The knowledge provided in this chapter points out the innovative possibilities of integrated technologies with respect to small-to-large scale, wholesale, vendor, end user, and sustainable farmland. The aim of this study is to incorporate hyperledger formulation in a decentralized blockchain building with the Internet of Things gadgets in automated agriculture. This involves placing actuators and sensing devices on the ground to develop an infrastructure of coupled gadgets that continuously acquire and convey data from the realm of agriculture. This section outlines data collection methods practiced in agriculture using IoT devices as well as blockchain. It emphasizes wired and wireless connectivity and describes the types of sensors used to monitor soil conditions, weather patterns, crop health, and other relevant parameters. An example is that farmers may receive weather- and climatepredicted data promptly. The heart of the research is to understand the study on data analysis in the agricultural sector using blockchain technology. From descriptive analysis for historical data review to predictive analysis for forecasting crop yields and disease attacks, this section provides an overview of the techniques in practice. It examines the increasing trend towards the adoption of edge computing in agriculture, enabling real-time data analysis directly from the ground, which may reduce latency, improve decision-making speed, and reduce the need for centralized cloud processing. The concluding portion addresses pragmatic applications for unified systems in IoTdriven statistical analysis and agribusiness. Supply chain (SC) optimization, surveillance of crops, smart watering systems, and agricultural precision farming are

^{*} Corresponding author S. Sivabalan: Computer Science Engineering, School of Computing and Informatics, Vignan University, Guntur, Andhra Pradesh, India; E-mail: sivabalan1990s@gmail.com

Sivabalan et al.

several examples. Identifying a handful of the complications that arise with this scientific convergence, the study examines pitfalls that parties in the agricultural sector have to navigate. It involves prerequisites for suitable physical labor, cooperation hardships, and data safety worries. New technologies designed to address the foregoing problems and efforts to fix those conflicts with farm-integrated IoT-driven data visualization are looked at along with their demonstrated intelligent farming approaches. Prospective paths in IoT-driven information mining and a system with embedded components for agriculture-related access without agent marketing are laid out in the investigation's summary. The work discusses the potential effects of artificial intelligence (AI) and machine learning (ML) promotions, strengthened sensory technological advances, and the possible incorporation of blockchain for safeguarding data and the ability to track individuals for sustainable farming and planetary food sustainability. The investigation of embedded equipment and IoT-driven analytical methods in the agricultural industry is addressed in this scientific statement. It offers an explanation of the manner in which agribusiness is adapting to herald in an additional phase of ecological responsibility, preciseness, and operational effectiveness.

Keywords: Blockchain-enabled agriculture, Cloud, Data-driven agriculture, IoT, Farm analytics, Transformative technology.

INTRODUCTION

Conventional methods of farming have experienced a change in perspective as a consequence of the unity of advances in technology, agricultural activities, and Internet of Things solutions that utilize data. The incorporation of distributed ledgers, predictive analytics, and connected devices has developed into an outstanding example of innovation in agricultural environments, with the potential to drastically alter the methods by which people maintain food supplies and cultivate the environment. It looks at the upstart prospects of combining blockchain, data mining, and the Internet of Things in the agriculture domain. Recent advances have been utilized in growing crops, which have traditionally relied on human labor and opportunistic processes, to increase profitability, longterm viability, and traceability along the farming supply chain (SC). IoT gadgets attentively acquire minute information from the field of agriculture as part of the pairing cycle. The sensors that are incorporated into the soil, plant crops, and gearing provide an ongoing source of insights into crop wellness, surroundings, and handling of resources. Such information has an important influence on landowners' awareness, analysis, and behavior toward the demands of their agricultural lands. In parallel, the use of data analytics allows landowners and other parties to make sense of this torrent of evidence by obtaining useful insights that transform how they make decisions. Data science redefines the agricultural environment by promoting trained digital-driven actions from forecasting models and growing timing for planting to distributing assets tactics that promote maximum productivity. This dependence on data advancement has been

Revolutionizing Agriculture

accelerated by the blockchain system's disruptive ability. An information and communications technology (ICT) portal can be deployed to render data that has been acquired by numerous farmers implementing handheld devices publicly. This platform can give instantaneous information to all individuals, including agriculturalists. Fig. (1) indicates the nature of smart farm technology and the functions of ICT [1].

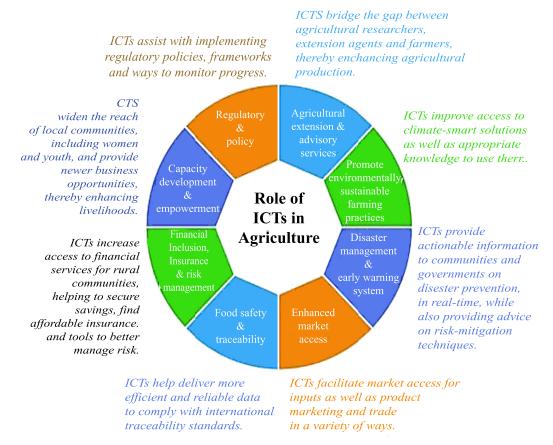


Fig. (1). Scenario-based role of ICTs in agriculture.

The inherent features of decentralized management, inertia, and clarity of blockchain networks find wide application in the verification and safekeeping of data pertaining to agriculture, making sure of its constancy across the SC. Blockchain utilizes the ability to keep tabs on products from cultivation to the surface, raising patron trust and entirely disrupting the circumstances around its source. People want to learn about the hyperlinks between scientific cornerstones and achieve knowledge about their significance and cumulative impact on the rise of agribusiness. It aims to shed light on the radical path of farming practices

SUBJECT INDEX

A

Aadhar card verification 158, 159, 160 Accessibility technology 219 Agri-horticulture system 260 Agricultural 103, 270, 284 lands 284 machinery 270 methods 103 Agriculture 103, 105, 260, 267, 269 contemporary 267 industry 103 smart urban 269 sustainable 105, 260 AI-based techniques 4 Air pollution 213 Algorithms, cryptographic 191 Apache software 79 Application(s) 14, 19, 53, 55, 59, 64, 66, 78, 79, 84, 85, 89, 110, 123, 126, 127, 272 industrial 123 mobile 14, 19, 272 programming interfaces (APIs) 53, 55, 59, 64, 66, 78, 79, 84, 85, 89, 110, 126, 127 Artificial 213, 234, 241, 242, 243, 244, 245, 247, 248, 249, 253, 254 intelligence technologies 213 neural network (ANN) 234, 241, 242, 243, 244, 245, 247, 248, 249, 253, 254 Automate 35, 42, 98, 116, 119, 127, 161, 164, 165, 265, 289 household environments 289 transactions 119 Automated 15, 205, 258, 263, 268, 271, 272, 273, 274, 278, 292 allocation 292 climate control systems 273 production management 258, 263, 268, 271, 272, 274, 278 smart poultry farming system 205 tools 15 Automated farming 201, 211

systems 211 technology 201 Automated horticulture 258, 278 production systems 258 systems 278 Automatic compensation 38 Automation 200, 201, 214, 215, 259, 260, 261, 262, 266, 270, 272, 274, 275, 279, 280 agro 270 merging 266 systems 272 techniques 201 traditional industrial 262

B

Bitcoin 27, 71, 121, 144, 170, 171, 172, 177, 178, 179, 192, 301 cryptocurrency 170 digital currency 71 Block 83, 178 link technology 83 verification process 178 Blockchain 13, 14, 15, 27, 33, 70, 115, 126, 127, 132, 138, 139, 140, 141, 142, 144, 155, 162, 175, 182, 189, 190, 291 architecture, autonomous 182 -based systems 27, 189 computing 70 consortium healthcare 33 ecosystem, publicly-permissioned 291 industry 190 management tools 14 monitoring technologies 175 network 13, 14, 15, 115, 126, 127, 132, 138, 139, 140, 141, 142, 144, 155, 162 software 126 systems, singular 175 Blockchain-based 47, 55, 118, 122, 145, 179 control application 55 healthcare applications 47

monitoring 179 supply chain management systems 118, 122, 145 Blockchain technology 95, 174, 269 guarantee 95 merging 269 testing 174 Blockchain transactions 94, 158, 163, 192, 289 Bluetooth low energy (BLE) 12 Businesses 173, 195, 300 agricultural 300 blockchain development 195 commercial 173 Byzantine fault 33, 73, 74, 186, 193 tolerance (BFT) 33, 73, 186, 193 -tolerant 74

С

Carbon 96. 204 emissions 96 monoxide emissions 204 Chain 80, 101, 115, 124, 132, 140, 159, 177, 179, 269, 286, 290, 291 agricultural supply 101, 269, 286 Climate forecast data 296 Cloud 3, 9, 10, 13, 190, 211, 214, 261, 265, 284, 297 computing 190, 261, 265 database 9, 10 services, accessible public 190 storage 214 Colum-oriented database 78 Communication 6, 69, 173, 234, 268 networks 6 secure information 173 technologies 69, 234, 268 Computer 6, 228 software developers 6 vision algorithms 228 Configuration system Chaincode (CSCC) 80, 89 Connectivity, wireless 283 Consensus algorithms 125, 135, 144, 160 Consumption 269, 300 nutrition 300 wasteful water 269 Convolutional neural networks (CNN) 11, 218, 221, 223

COVID-19 pandemic 32, 260 Crop 236, 237, 262, 272, 275 disease 262 growth 236, 237 monitoring systems 272 production 275 Cryptocurrencies 121, 133, 143, 172, 178, 299 Cryptographic 3, 35, 95, 115, 130, 133, 171, 187, 288 attributes 288 properties 95 techniques 3, 35, 171 Cryptography 26, 35, 126, 148 Cyber-physical systems (CPS) 262 Cybersecurity threats 296

D

Data 17, 24, 33, 36, 48, 149, 191, 284 interoperability 24, 33, 36, 48 management, transparent patient 149 mining 191, 284 processing, real-time 17 Deep 222, 234, 242, 243, 244, 245, 247, 248, 249, 254 belief network (DBNs) 234, 242, 243, 244, 245, 247, 248, 249, 254 learning networks 222 Digital health records (DHRs) 2, 66, 95 Disease(s) 172, 181, 194, 206, 236, 239, 270, 272, 276 cardiovascular 194 foot 206 outbreaks 272 Dynamics, nutrient 236

Е

Economic growth 97, 98, 99, 264 Electrical garbage 96 Electronic 18, 25, 148, 149, 151, 152, 153, 171, 172, 182, 183, 184, 185, 186, 188 health records (EHRs) 18, 25, 148, 149, 151, 152, 153, 171, 172, 184, 185, 186, 188 healthcare data (EHD) 152 medical records (EMRs) 182, 183, 186 Energy 96, 108, 171, 193, 201, 236, 265, 272, 289, 292, 303 consumption 108, 272

Gupta et al.

Subject Index

solar 265 Era, transformative 21

F

Farm management information system (FMIS) 268, 270 Farming 235, 269, 286 chicken 269 industry 286 methods 235 Farming practices 214, 215, 288 organic 288 smart 215 traditional 214 Farmland mapping 300 Faster 30, 39 data analysis 39 drug development 30 Fertilizers 235, 236, 266, 274, 276, 277, 278 chemical 266 natural 266, 276, 278 organic 266 FHIR resources 150, 155, 157 Financial 99, 148 instruments 99 transactions 148 Food 262, 264, 265, 292, 293, 294, 295, 297, 298, 300, 301 harvested 264 industry 262, 301 supply chain (FSC) 265, 292, 293, 294, 295, 297, 298, 300 Food production 298, 300 process 298 systems 298 Framework 1, 53, 55, 60, 64, 66, 103, 108, 127, 151, 153, 188, 247, 249, 252 architectural 1 narrative synthesis 127 Fraud detection 222 Fraudulent data collection 69 Fully homomorphic encryption (FHE) 28 Function, cryptographic 135, 136

G

GAP analysis 122 Gas 138, 142, 143, 204, 207, 209, 212, 213 ammonia 204 nitrogen 212, 213 restriction 143 Genetic codes 88, 173 Genomes, managing 173 Grover's 130, 131 method 131 technique 130, 131

Η

Hardware-based random number generators 135 Harvesting 236, 258, 264, 266, 270, 271, 273, 275, 276, 278, 286, 299 robotic 258, 278 methods 276 processes 278, 299 systems 270 Health 109, 110, 186 computer systems 186 management ecosystems 109, 110 Health information 12, 14, 19, 20, 49, 69, 70, 82, 86, 94, 95, 183, 184, 186, 187, 188, 193 electronic 184, 188 sensitive 12, 14, 49 Health record(s) 2, 20, 26, 44, 48, 53, 54, 55, 66, 82, 89, 95, 100, 106, 152 digital 2, 66, 95 managing 152 Health record system 184 blockchain-powered electronic 184 elementary electronic 184 Healthcare 2, 18, 21, 23, 24, 25, 26, 28, 29, 30, 46, 48, 49, 66, 88, 101, 103, 104, 105, 148, 149, 150, 157, 160, 161, 162, 164, 165, 167, 171, 174, 181, 182, 183, 186, 195 blockchain adoption in 48, 49 blockchain integration 2 community 186 contemporary 103 data management 2, 23, 148, 157, 195 data protection 46 databases 26 delivery 105, 164, 165 ecosystem 18, 48, 66, 101, 104, 181 growth 88 industry 24, 25, 28, 29, 148, 149, 150, 160, 161, 162, 167, 171, 174, 181, 183

managing 182 remote 21 transforming 30 Healthcare applications 2, 11, 12, 27, 33, 173, 188 mobile 188 Healthcare data 10, 11, 12, 19, 25, 27, 33, 47, 48, 82, 83, 148, 149, 152, 160, 161, 162, 191, 192, 193 electronic 152 sensitive 11, 19, 33, 152, 193 Horticultural 264, 277 production methods 264 techniques 277 Horticulture 258, 259, 261, 263, 264, 266, 267, 271, 272, 273, 274, 275, 277, 279, 280 environment 279 greenhouse 277 industry 261, 264 Humidity sensors 205, 211, 212 Hyperledger fabric 19, 70 network 19 system 70

I

Images, remote sensing 221 Integrated pest management (IPM) 272, 275, 278 IoT 2, 4, 13, 21, 172, 270, 290 and blockchain technologies 172 applications, agriculture-focused 290 cloud 2 -connected devices 4 healthcare devices 13 -powered medical technology 21 technologies in agricultural machinery 270 IoT device 6, 13 blockchain-secured 6 software 13

L

Lighting 97, 200, 201, 232, 260 fluorescent 260 network 97 Logistical assistance 263 Long short-term memory (LSTM) 234, 235, 237, 238, 239, 243, 245, 246, 247, 248, 249, 252, 253, 254, 255

Μ

Management 40, 258 resource chain 40 techniques 258 Managing smart technology 296 Medical 2, 54, 81, 82, 149, 152, 181, 184, 190 cyber-physical systems (MCPS) 152 information, sensitive 54, 190 records system 81, 184 technology 2, 149 treatment 82, 181 Memory, long short-term 234, 235, 252, 255 Microbial treatments 275 Microcontroller-based gateway 265 Middleware systems 265 Mining 120, 144 consensus protocol 120 power 144 Mobile devices 187, 203, 204 Monitoring 2, 14, 15, 16, 17, 19, 83, 86, 170, 173, 203, 204, 235, 258, 270, 273, 277, 278, 286, 289 automatic 204 crop 235, 270 glucose 2 sensor-based 258, 278 systems, intelligent smart poultry farming 203 Monitors transmissions 82

Ν

Nationwide blockchain network 181 Natural language processing (NLP) 12, 242 Network 7, 70, 74, 80, 120, 121, 124, 125, 126, 132, 133, 134, 135, 139, 140, 141, 143, 144, 145, 178, 183, 222, 225, 241, 279 computational 241 convolutional 225 restricted 183 traffic, manipulating 140 transportation 279 NoSQL databases 78 Nutrient deficiencies 235

Gupta et al.

Subject Index

0

OpenCV-contrib-python 218, 228, 229

P

Pest resistance 280 Pfizer, pharmaceutical company 20 Phalaenopsis 259 Pluggable ordering service 75 Poultry farming 200, 201, 202, 205, 211, 212, 213, 214, 215 automated smart 213 intelligent 211, 213 system, intelligent 212 traditional 202, 214 Poultry system, intelligent 213 Principal component analysis (PCA) 214 Problems 88, 95, 99, 100, 107, 108, 110, 180, 183, 186, 190, 277, 278, 284, 286 agricultural 110 environmental 95 Process 5, 6, 64, 65, 83, 86, 117, 161, 164, 183, 214, 227, 229, 232, 292, 293, 298, 299 billing 183 chicken production 214 data packet generation 64 secure authentication 65 Processing 32, 155 enabling ontology-based 155 faster transaction 32 Protection, intellectual property 47 Protocols, cryptographic 124 Provenance management 150, 154 automatic 150 Python 229, 230 development environment 230 program 229

R

Random access memory 87, 89 Recurrent neural networks (RNNs) 11, 237, 239, 252, 253 Region-based convolutional neural network (RCNN) 222, 225, 228, 231 Relational database management system (RDBMS) 78, 89 Remote patient monitoring (RPM) 2, 23, 24, 30, 31, 95, 194

S

Secure transmission 12, 83 Sensor data 8, 11, 205, 221, 235, 254, 265, 271, 273, 291 information 205 marketplace 291 Sensor networks 101, 203, 205, 265 wireless 205, 265 Sensors 205, 209, 212, 213 air quality 205, 212 thermal 209, 213 thermal camera 205 thermal photo 213 Smart farm technology 285 Smart farming 105, 106, 203, 211, 239, 241, 242, 275, 280, 297 and automation 275, 280 and weather prediction 239 applications 241, 242 innovations 297 management 105, 106 systems 203, 211 technology 297 Software 179, 300 algorithm 179 crop supervision 300 Soil 262, 276, 290, 295 chemistry 290 fertility 262, 276 humidity 295 Soilless growth methods 278 STRIDE 117, 118, 122, 123, 145 framework 117, 118, 122, 123 methodology 122 Supply chain 23, 89, 101, 114, 115, 117, 122, 148, 262, 288, 289, 292, 295, 300 activities 262 integrity 89 management 23, 114, 115, 117, 122, 148, 288, 289, 292, 295, 300 networks 101 Support vector machine (SVMs) 234, 240, 243, 244, 245, 247, 248, 249, 253 Symmetric encryption algorithm 58

Gupta et al.

Т

Ζ

Techniques 14, 15, 214, 223, 226, 266, 267, 275, 303 contemporary 267 data augmentation 226 data compression 214 forecast farming 303 forecasting 223 privacy-preserving 14, 15 traditional agricultural 275 traditional horticultural 266 Tomography, computed 2 Traditional 65, 266, 267, 294, 296 farming systems 294 horticulture production systems 266 methods of managing smart technology 296 storage methods 65 techniques 267 Transactions 128, 129 confirming network 129 cryptocurrency 128 Transformation, digital 37 Transformative technology 45, 284 Transforming supply chain management 40, 41

V

Vehicles 222, 232, 289 autonomous 222, 232 smart 289

W

Waste 41, 95, 96, 120, 180, 236, 274 electronic 96 freshwater 236 reducing energy 95 resource 120 Water 213, 261, 273, 276, 277 sensor 213 waste 261, 273, 276, 277 Weed management system 265 Wide row database 78 Wireless sensor networks (WSN) 205, 265

ZigBee protocol stack 204

Blockchain-Enabled Internet of Things Applications in Healthcare: Current Practices and Future Directions" is a groundbreaking exploration of how blockchain technology can revolutionize healthcare. It offers insightful analysis on enhancing data security, privacy, and efficiency through IoT integration, making it an essential read for professionals seeking to innovate in the healthcare sector.

Alvaro Rocha Professor ISEG, University of Lisbon, Lisbon, Portugal

Shashi Kant Gupta

Dr. Shashi Kant Gupta is a post-doctoral fellow and researcher of computer science and engineering at Eudoxia Research University, USA in collaboration with Eudoxia Research Centre, India. He is currently working as an adjunct research faculty, Centre for Research Impact & Outcome, Chitkara University Institute of Engineering and Technology, India. He is an editor-in-chief of International Journal of Data Informatics and Intelligent computing (IJDIIC) and also the editor-in-chief of International Journal of Emerging Technologies in Computer and Communication (IJETCC). He received many awards from international and national organizations. He has published many patents like Indian, Germany, UK etc. in the field of CSE and IT.

Joanna Rosak-Szyrocka

Dr. Joanna Rosak-Szyrocka is working as an assistant professor. She is a reviewer for a number of prestigious journals, such as IEEE Access, TQM, Elsevier, etc. She is the vice president of Qualitas Foundation and a member of the Polish ISO 9000 Forum Club. She was awarded for scientific supervision of the diploma thesis of a student, who achieved the best IKAR quality thesis 2019, under the patronage of the Ministry of Science and Higher Education.

Amit Mittal

Dr. Amit Mittal has over two decades of domestic and international experience in academic leadership, teaching, research, consulting, training and mentorship. He manages and supervises Ph.D. programs offered at Chitkara University and 16 scholars received their Ph.D. degrees under his guidance. He has published over 60 Scopus / SSCI indexed papers. He is the recipient of the Chitkara University Excellence award 2021 for highly cited authors and publications with highest H-index (Business School category). His areas of research and consulting expertise are international marketing and emerging market studies, consumer behavior, brand management, shopping behavior, and business research methods. He is a member of the thesis review board of a number of universities.

Sanjay Kumar Singh

Dr. Sanjay Kumar Singh is M.Sc, MCA, M.Tech (IT) and Ph.D. and is currently working as a professor and program director at Amity Institute of Information Technology Amity University Uttar Pradesh Lucknow Campus. He has a teaching experience of more than 28 years at post graduate level and industry experience of more than 03 years including, All India Council for Technical Education (AICTE). His teaching & research areas include big data analytics, algorithm analysis and design, advanced numerical Techniques, software engineering, etc. He has supervised 16 Ph.D students. He has published more than 70 research papers and is also editor and reviewer of 07 international journals.

Olena Hrybiuk

Prof. Olena Hrybiuk is a doctor of pedagogical sciences, associate professor, a researcher at the Faculty of Engineering of the International Science and Technology University, National Academy of Sciences of Ukraine. She has specialized in teaching mathematics, statistics and probability, modelling processes with the use of COMSRL, and in education management. She is the author of over 257 scientific publications and 17 teaching manuals. She has led 15 research projects as a principal investigator.