
Preface

Last years have shown a great interest in studying applied mathe-
matics problems. One of the most important classes of such problems is
the class of systems with phase change (systems with free boundary) en-
countered in numerous problems of physics, such as: melting ice, crystal
formation, diffusion of oxygen in an absorbent tissue, solidification in
continuous casting, etc.

From mathematical point of view, a free boundary problem can
be considered as a nonlinear parabolic equation with limit values, for
which is unknown the solution and its field.

In mathematics literature, for the phenomenon of solidification
are known more mathematical models designed to describe the free
boundary. Remember in this connection the Stefan problem as well
as the phase-field transition system (Caginalp’s model). Among the
papers and monographs devoted to the study of free boundary problems
of Stefan type, we recall those signed by V. Barbu [1], V. Barbu & N.
Barron [2], J.L. Lions [3], C. Saguez [4], V. Arnăutu & P. Neittaanmäki
[5] and D. Tiba [6].

The phase-field transition system, known also as a phase-field sys-
tem, was introduced in literature by G. Caginalp [7]. This model has
been established as an extension (a refinement) of the classical two
phase Stefan problem to capture the effects of surface tension, super-
cooling, superheating, etc. Phase-field model (often called as phase-field
transition system) in the form in which it was introduced by Cagi-
nalp [7], consists in the following two nonlinear differential equations of
parabolic type (Q = [0, T ] × Ω):

ut + `
2ϕt = k∆u + f in Q, (1)

τϕt = ξ2∆ϕ + 1
2a (ϕ − ϕ3) + 2u + g in Q, (2)
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subject to the boundary conditions

u = u∂(x), ϕ = ϕ∂(x) x ∈ ∂Ω, (3)

and initial conditions

u(0, x) = u0(x), ϕ(0, x) = ϕ0(x) x ∈ Ω, (4)

where u, ϕ are the unknown functions, f = g = 0, and Ω, T, `, k, τ, ξ, a,
are described in detail in Chapter 2.

On the one hand, the content of this book is dedicated to the ap-
proximation (from theoretical and numerical point of view) of equations
(1)-(2) in the presence of different types of boundary conditions and, on
the other hand, analysis of some boundary optimal control problems,
governed by this system.

The present work is conceived on the basis of the results and meth-
ods used by the author in notes [8]-[37] and it consists in a preface, five
chapters, two annexes and bibliography.

Several types of boundary conditions were considered in the con-
text of this work, namely (Σ = [0, T ] × ∂Ω):

∂
∂ν u + hu = w(t, x), ∂

∂ν ϕ = 0 on Σ, (3′)

∂
∂ν u + hu = w(t)g(x), ϕ = 1 on Σ, (3′′)

∂
∂ν

u + hu = 0, ϕ = 0 on Σ, (3′′′)

∂
∂ν u = 0, ∂

∂ν ϕ = 0 on Σ, (3iv)

u = 0, ϕ = 0 on Σ. (3v)

In the first sections of Chapter 1 we recall notations, definitions and
the main spaces of functions, some results about approximation of the
nonlinear equations in Banach spaces and basic notions from numerical
analysis, etc, frequently used in the next chapters. In the last two
sections of this chapter we present a more detailed descriptions about
the phase-field system and about the continuous-casting process of steel
- the main industrial technology involved in our numerical experiments.

In Chapter 2 we will deal, on one hand, with the study of the ex-
istence, uniqueness, regularity, and estimates of the solution of phase-
field transition system and, on the other hand, we will analyze the
convergence of some approximating schemes of fractional steps type
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associated with this nonlinear system. Section 2.1 studies is the ex-
istence, uniqueness and regularity of the solution of the phase-field
transition system subject to the non-homogeneous Cauchy-Neumann
boundary conditions (Theorem 2.1). Such kind of conditions allow to
the phase-field system (Caginalp’s model) to be considered as a model
of heat transfer from the surface of product to the environment, when
we assume that the heat is extracted by convection and conduction in
the continuous casting process. The purpose of Section 2.2 is to treat
the phase-field system with a general nonlinearity in ϕ. The existence,
uniqueness, regularity and estimates of the solution it is proved (The-
orem 2.3) for this relevant case. Basic tools in this approach are the
Leray-Schauder degree theory, the Lp-theory of linear parabolic equa-
tions, properties of the Nemytskij operator, and a priori estimates in
Lp(Q). Section 2.3 reviews a fractional steps scheme corresponding to
(1), (2), (3v) and (4), with f = g = 0. The obtained result is in-
cluded in Proposition 2.1 and the idea of the proof is inspired from
the work of V. Barbu & M. Iannelli [38]. The next Section is devoted
to the extension of some results known for m-accretive operators (see,
e.g., Barbu [39] and Brézis [40]) to ω-m-accretive operators (Theorem
2.4), with a fixed real number ω. As an application of the Theorem
2.4, it is shown how the nonlinear phase-field transition system (with
homogeneous Neumann-Neumann boundary conditions - (3iv)) can be
decoupled in two simples systems. In the last Sections of Chapter 2
we consider the phase-field transition system (1)-(2) and (4) with two
different boundary conditions:

• homogeneous Cauchy-Dirichlet boundary conditions - (3
′′′

);
• non-homogeneous Cauchy-Neumann boundary conditions - (3′).

The main results are included in Theorem 2.5 and Theorem
2.6, and assert that (in certain assumptions on data u0, ϕ0 and w)
for ε > 0, the solution (uε, ϕε) of approximating scheme converge to
the weak solution (u∗, ϕ∗) of problem (1), (2), (4) and (3′′′) or (3′),
respectively. It is also proved that the weak solution of approximating
scheme is a strong solution; we are thus in front of a constructive way to
demonstrate the existence solution in phase-field transition system. The
methods used in demonstration of this convergence results are those of
compactness (in particular Helly-Foias theorem). The weak stability of
approximating scheme corresponding to boundary conditions (3

′′′
), is

also proved (Corollary 2.1).
Some types of boundary optimal control problems, governed by the

nonlinear phase-field transition system, are introduced and analyzed in
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Chapter 3. The aim of the Section 3.1 is to prove (for later use) a priori
estimates in L2([0, T ]; H2(Ω)) for unknown u, ϕ in phase-field system,
in the presence of following boundary conditions: ∂

∂ν u + hu = w(t, x),
∂
∂ν ϕ = 0 on Σ and, ∂

∂ν u+hu = w(t)g(x), ϕ = 1 on Σ, where w : Σ → IR
(or w : [0, T ] → IR) represents the boundary control (the temperature of
the surrounding at ∂Ω). Both cases (w depending explicitly on t and x
or only on t) allow the model of phase-field to be involved in realistic
numerical simulations in the metallurgic industry, and not only.

In Section 3.2 we will prove the existence of an optimal control
(Proposition 3.3) for the problem stated there. The proof of this
result is based on estimates established in the previous Section. The
distributed optimal control problem governed by phase-field system has
been analyzed in works done by: Z. Chen & K.-H. Hoffmann [41], M.
Heinkenschloss & E.W. Sachs [42], M. Heinkenschloss & F. Troltzsch
[43], as well as K.-H. Hoffmann & L. Jiang [44]. Boundary optimal
control problem governed by the classical Stefan problem in two phases
was studied by V. Barbu [1], A. Friedman [45], C. Saguez [4], D. Tiba
[6].

We associate to the optimal control problem introduced in 3.2 an
approximating optimal control problem for which we prove, first, the
existence of an optimal control. Besides the existence of an optimal
control, the convergence of the optimal solution of approximating prob-
lem to the optimal solution of the original problem is proved in the
Section 3.3. The result is included in (Theorem 3.1). For the approx-
imating problem, necessary optimality conditions (Theorem 3.2) are
established in the next Section. Such a problem was studied, for an op-
timal control problem governed by nonlinear and parabolic variational
inequalities by V. Barbu in [46].

In Section 3.5 is defined another type of boundary optimal control
problem (an inverse problem). Necessary optimality conditions (max-
imum principle) for such sort of problem are given by Theorem 3.4.
A likewise problem was studied in V. Arnăutu [47] but governed by the
Stefan problem.

An optimal control problem, with the distributed control acting
on a subset ω ⊂ Ω and with the state constraint in time variable (PS),
is analyzed in Section 3.6. The necessary optimality conditions for
(PS), Theorem 3.5, were obtained by passing to the limit for ε → 0
in the approximating control process considered (the adequate penalty
problem P ε

S, ε > 0).
The last Section of this Chapter is dedicated to a non-homogeneous
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boundary optimal control problem (P ). The main result of this Section
(Theorem 3.6) amounts to saying that problem (P ) can be approxi-
mated for ε → 0 by the sequence of problems (P ε). The convergence of
the approximating process leads to an idea of numerical approximation
of the optimal control of problem (P ), namely (see Chapter 4, algorithm
cpht-2D, step P2), at every iteration iter, the computation of the ap-
proximate solution corresponding to the nonlinear phase-field transition
system is substituted by computation of the approximate solution for
an ordinary equation and a linear system. Hence a large amount of
time is saved concerning computations.

Chapter 4 is oriented to the numerical analysis of the problems
stated in Chapters 2 and 3.1

The first Section is dedicated to the approximation of solution to
the phase-field system in 1D. The discrete state equations were con-
structed using a First-order Implicit Backward Difference Formula (1-
IMBDF), (see and S.J. Ruuth [48]). Three numerical methods to com-
pute the approximate solution (Newton method, the fractional steps
method and cubic spline method) are developed and, corresponding,
conceptual algorithms are presented (algnewton1D, algfrac1D, al-
gspline1D). The use of the fractional steps method simplifies the numer-
ical computation due to its decoupling feature (compares the algorithms
algnewton1D and algfrac1D). Stability conditions (Proposition 4.1,
Proposition 4.2) for fractional and cubic spline approximation are
established too.

Section 4.2 deals with the approximation of solution to the phase-
field system in 2D via fractional steps method. An implicit (backward)
finite difference scheme in time and a finite element method (fem)
in space are used to construct the discrete equations. An conceptual
algorithm (algfracfem2D) have been introduced in order to compute
the approximate solution.

In the next Section we will deal with the approximation of the
boundary optimal control in (Pε

inv) stated by Theorem 3.4 in Section
3.5. The main novelty brought by the conceptual algorithm InvPHT1D is
that the computation of the approximate solution corresponding to the
nonlinear system (4.1) is replaced by the calculation of the approximate
solution for an ordinary equation and a linear system (compare step P1
in C. Moroşanu [14] with the steps P1-P2 in the present algorithm).
Numerical experiments join the abstract treatment.

1
parts of this material have been partial elaborated under the support of Contract

CEx 05-D11-84/28.10.2005, financed by Romanian Ministry of Education and Research.
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Two conceptual algorithms of gradient type (scpth-2D, cpth-2D)
to compute the optimal control (see Theorem 3.5) and the suboptimal
control (see Theorem 3.7) of problems (PS) and (Pε), introduced in
Chapter 3, are presented at the end of this Chapter. Each algorithm is
implemented and accompanied by numerical experiments.

Aspects of the implementation of conceptual algorithms developed
in Chapter 4 and numerical results obtained through their use, are given
in the last Chapter. Thus the reader may be convinced on the accu-
racy of programs written and can easily understand the importance of
methods developed in this material. All programs were written in MAT-
LAB language and are endowed with sufficient comments for facilitate
tracking them.

We complete the work with two annexes. The existence and reg-
ularity for the solution of one linear system (auxiliary linear system),
having a structure similar with those in the associated approximating
schemes of nonlinear phase-field transition system, it is proved in AN-
NEXE A (Theorem A.1). Concerning the methods used in the proof,
an essential difference with respect to Chapter 2 consists in that here
we make a priori estimates in L2(Q) instead of Lp(Q). The estimation
technique used is also different from those used for the rest of the book.
In ANNEXE B we have presented details about the implementation of
the fem (finite element method).

Optimal control problems treated in this work reflect the contin-
uous casting process of steel. To emphasize more deeply the practical
nature of the issue studied in this work, we will make a brief presen-
tation of the general principle of operation for a continuous casting
equipment:

The steel is brought over the installation in a pot from which will
flow in the distributor and then in the crystallizer (cast-iron mould
from copper - cooled by water circulation). On leaving the crystal-
lizer, solidified front (which surrounds steel that is still liquid) pass
in secondary cooling zones, intended to ensure the end of the so-
lidification process.

The leadership of a continuous casting equipment is based first
on a good knowledge of the overall thermal evolution (the thickness
of the front solidified at the exit of the crystallizer, the temperature
distribution along the body in casting, the amount of heat extracted by
each cooling zone, etc.) To develop a continuous casting equipment is
motivated mainly by improving the quality of cast steel and by reducing
the cost price. Development of numerical methods for calculating the
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effective solution of some equations that make up the theoretical model
is thus essential. The problems of control study may serve to define the
optimal strategy for the development of automation on this issue.

A good part of this material was exposed by the author to a group
of Ph.Ds students of Huazhong Normal University in Wuhan, China,
constituting at the same time the support-course for ”Special chap-
ters of informatics” thought to the IVth year students of ”Al.I. Cuza”
University in Iasi, Faculty of Mathematics, Applied Mathematics De-
partment.

Finally, to Mr Acad.Prof.dr. V. Barbu I wish to express my grati-
tude for his encouragement and valuable suggestions, made during the
drafting of this book. I am deeply grateful to Mr Prof.dr. Calin Ignat
to whom I owe the first steps towards research. Also, warm thanks
to members of the scientific seminar Nonlinear analysis and optimal
control of the Faculty of Mathematics of the University ”Al.I. Cuza
University in Iasi for interesting discussions and collegiality.
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