Gravity-Superconductors Interactions: Theory and Experiment

by

Giovanni Modanese, Glen A. Robertson

DOI: 10.2174/97816080539951120101
eISBN: 978-1-60805-399-5, 2012
ISBN: 978-1-60805-400-8



Indexed in: EBSCO.

Recent developments in gravity-superconductivity interactions have been summarized by several researchers. If gravitation has to be e...[view complete introduction]
US $
Buy Personal Book
119
Order Library Book
476
Order Printed Copy
*143
Order PDF + Printed Copy (Special Offer)
*202

*(Excluding Mailing and Handling)

🔒Secure Checkout Personal information is secured with SSL technology
Download Flyer

Study of Light Interaction with Gravity Impulses and Measurements of the Speed of Gravity Impulses

- Pp. 169-182 (14)

Evgeny Podkletnov and Giovanni Modanese

Abstract

An attempt has been made in this work to study the scattering of laser light by the gravity-like impulse produced in an impulse gravity generator (IGG) and also an experiment has been conducted in order to determine the propagation speed of the gravity impulse. The light attenuation was found to last between 34 and 48 ns and to increase with voltage, up to a maximum of 7% at 2000 kV. The propagation time of the pulse over a distance of 1211 m was measured recording the response of two identical piezoelectric sensors connected to two synchronized rubidium atomic clocks. The delay was 631 ns, corresponding to a propagation speed of 64c. The theoretical analysis of these results is not simple and requires a quantum picture. Different targets (ballistic pendulums, photons, piezoelectric sensors) appear to be affected by the IGG beam in different ways, possibly reacting to components of the beam which propagate with different velocities. Accordingly, the superluminal correlation between the two sensors does not necessarily imply superluminal information transmission. Using the microscopic model for the emission given in Chapter 5, we also have estimated the cross-sectional density of virtual gravitons in the beam and we have shown that their propagation velocity can not be fixed by the emission process. The predicted rate of graviton-photon scattering is consistent with the observed laser attenuation.

Purchase Chapter  Book Details

Advertisement

Special New Year Discount

Webmaster Contact: info@benthamscience.net Copyright © 2019 Bentham Science