Chapter 3

Block Preconditioners for Saddle Point Problems Resulting from Discretizations of Partial Differential Equations

Piotr Krzyzanowski

Abstract

<p>We discuss a family of block preconditioners for iterative solution of symmetric saddle point type problems arising from PDE discretizations. The building blocks consist of preconditioners for smaller sized, symmetric positive definite operators, which induce a norm in which the whole system is continuous and stable uniformly with respect to the mesh size h. We provide eigenvalue estimates and derive conditions under which the conjugate residual method using block preconditioners has convergence rate bounded independently of h.</p>

Total Pages: 44-65 (22)

Purchase Chapter  Book Details

RELATED BOOKS

.The Generalized Relative Gol’dberg Order and Type: Some Remarks on Functions of Complex Variables.
.Subharmonic Functions, Generalizations, Holomorphic Functions, Meromorphic Functions, and Properties.
.Predictive Analytics Using Statistics and Big Data: Concepts and Modeling.
.Differential and Integral Calculus - Theory and Cases.