Chapter 5

Updating the Dual Role of Brain Nitric Oxide in Neurodegeneration/Neuroprotection: Understanding Molecular Mechanisms to Devise Drug Approaches

Antonio Contestabile, Barbara Monti, Andrea Contestabile and Elisabetta Ciani

Abstract

<p>Nitric oxide (NO) has been established as an important messenger molecule in various steps of brain physiology, from development to synaptic plasticity, learning and memory. However, NO has also been viewed as a major agent of neuropathology when, escaping controlled production it may directly or indirectly promote oxidative and nitrosative stress. The exact borderline between physiological, and therefore neuroprotective, and pathological, and therefore neurodegenerative, actions of NO is a matter of controversy among researchers in the field. This is reflected in the present status of drug research, that is focused on finding ways to block NO production, and therefore limit neuropathology, as well as on finding ways to increase NO availability and therefore elicit neuroprotection. As an unavoidable consequence, both classes of drugs are reported to have neurodegenerative or neuroprotective effects, depending on the models in which they are tested. Aim of the present paper is to provide the reader with a survey, as much complete as possible, on the main aspects of NO biology, from biochemistry and chemical reactivity to the molecular signals elicited in neural cells target of its neurodegenerative or neuroprotective action. In doing that, many controversial aspects related to basic biology and to neuropathology of NO are taken into account. In the final sections, main classes of drugs able to interfere with NO physiopathology are examined, in order to try to devise possible directions for future NO-based therapeutical strategies.</p>

Total Pages: 63-109 (47)

Purchase Chapter  Book Details

RELATED BOOKS

.Botanicals and Natural Bioactives: Prevention and Treatment of Diseases.
.Frontiers In Medicinal Chemistry.
.Alkaloids and Other Nitrogen-Containing Derivatives.
.Potential Health Benefits of Biologically Active Peptides Derived from Underutilized Grains: Recent Advances in their Isolation, Identification, Bioactivity and Molecular Analysis.